您現(xiàn)在的位置: 中國(guó)科技創(chuàng)新網(wǎng) > 文章中心 > 創(chuàng)新人物百科 > 信息工程 > 文章正文
      專家信息 科學(xué)研究 論文專著 榮譽(yù)獎(jiǎng)勵(lì) 媒體報(bào)道

      專家信息:


      曹軍威,男,博士,現(xiàn)任清華大學(xué)信息技術(shù)研究院研究員、院長(zhǎng)助理。

      教育及工作經(jīng)歷:

      2009年至今清華大學(xué)天體物理中心兼任教授。

      2007年至今清華大學(xué)信息技術(shù)研究院助理院長(zhǎng)。

      2007年至今天體物理和空間研究Kavli研究所LIGO的實(shí)驗(yàn)室研究聯(lián)盟。

      2006年至今清華大學(xué)信息技術(shù)研究院教授。

      2004年至2006年麻省理工學(xué)院空間研究中心LIGO的實(shí)驗(yàn)室研究科學(xué)家。

      2002年至2004年德國(guó)C&C的研究實(shí)驗(yàn)室研究員。

      2001年至2002年華威大學(xué)計(jì)算機(jī)科學(xué)系研究員。

      2001年英國(guó)Warwick大學(xué)計(jì)算機(jī)博士畢業(yè)。

      1991年至1998年清華大學(xué)自動(dòng)化系本科、碩士畢業(yè)。

      社會(huì)兼職:

      資料更新中……

      科學(xué)研究:


      研究方向:

      主要從事先進(jìn)計(jì)算技術(shù)及其應(yīng)用研究。

      承擔(dān)科研項(xiàng)目情況:

      負(fù)責(zé)或參加完成10多項(xiàng)國(guó)家科技863計(jì)劃、教育部、自然科學(xué)基金、973和橫向研究項(xiàng)目。

      1、教育部:Elop在計(jì)算技術(shù)和應(yīng),2009-2011。

      2、中國(guó)國(guó)家自然科學(xué)獎(jiǎng)基金:對(duì)網(wǎng)絡(luò)基礎(chǔ)設(shè)施的理論和資源優(yōu)化與動(dòng)態(tài)約束算法,2009-2011。

      3、中國(guó)教育部的科研基金:引力波數(shù)據(jù)分析使用開(kāi)放科學(xué)網(wǎng),2008-2009。

      4、國(guó)家863高技術(shù)研發(fā)計(jì)劃:大型網(wǎng)絡(luò)化數(shù)據(jù)整合與查詢處理,2008-2009。

      5、國(guó)家863高技術(shù)研發(fā)計(jì)劃:組織,管理和農(nóng)業(yè)海量知識(shí)資源服務(wù),2007-2009。

      6、教育部:全國(guó)綜合系統(tǒng)開(kāi)放課程,2007-2010。

      7、國(guó)家863高技術(shù)研發(fā)計(jì)劃:數(shù)字農(nóng)業(yè)知識(shí)網(wǎng)格,2006-2010。

      8、清華大學(xué)研究院:網(wǎng)絡(luò)基礎(chǔ)設(shè)施的應(yīng)用啟用,2008-2010。

      9、中國(guó)自然科學(xué)基金委員會(huì):以往項(xiàng)目中國(guó)美研討會(huì)網(wǎng)絡(luò)基礎(chǔ)設(shè)施,2009。

      10、清華大學(xué)骨干人才計(jì)劃:網(wǎng)絡(luò)基礎(chǔ)設(shè)施技術(shù),2007-2008。

      11、信息科學(xué)與技術(shù)學(xué)院清華大學(xué):網(wǎng)絡(luò)基礎(chǔ)設(shè)施技術(shù),2006 -2008。

      12、LIGO的部署數(shù)據(jù)網(wǎng)格,網(wǎng)格,使社區(qū)引力波分析,2004-2006。

      13、奧運(yùn)- FLEMM:基于OGSA的FlexX /分子力學(xué),2003-2004。

      14、歐盟信息社會(huì)技術(shù)(IST)項(xiàng)目:GEMSS:網(wǎng)格仿真功能的醫(yī)療服務(wù),2002 -2004。

      15、NEC支持的項(xiàng)目:相關(guān)譜的集群和網(wǎng)格作業(yè)調(diào)度,2002-2004。

      16、貿(mào)易和工業(yè)。∕ETI)日本網(wǎng)絡(luò)計(jì)算項(xiàng)目部:優(yōu)化利用網(wǎng)格Datafarm對(duì)接構(gòu)象,2002-2003。

      17、美國(guó)航天局艾姆斯研究中心:面向計(jì)算網(wǎng)格系統(tǒng)管理工具發(fā)展,2001-2002。

      18、華威研究生院主席特別研究獎(jiǎng)學(xué)金:基于Agent的網(wǎng)格計(jì)算資源管理,1999-2001。

      19、方法和性能建模,測(cè)量,分析,評(píng)價(jià)和預(yù)測(cè)工具,1999-1999。

      20、國(guó)家863高技術(shù)重點(diǎn)研究項(xiàng):一個(gè)計(jì)算機(jī)集成制造中的應(yīng)用平臺(tái),1996-1998。

      21、BMCST - MIS系統(tǒng):為北京管理科學(xué)和技術(shù)委員會(huì)管理信息系統(tǒng),1995-1996。

      科研成果:

      資料更新中……

      發(fā)明專利:

      1、提高分布式系統(tǒng)性能調(diào)優(yōu)速度的方法 曹軍威; 張帆 清華大學(xué) 【中國(guó)專利】清華大學(xué) 2009-12-23

      論文專著:


      發(fā)表論文110余篇,出版專著10余部。

      出版專著:

      1《多代理系統(tǒng)理論、方法與應(yīng)用》范玉順,曹軍威 北京 [海德堡];清華大學(xué)出版社;施普林格出版,2002年。

      2《復(fù)雜系統(tǒng)的面向?qū)ο蠼、分析與設(shè)計(jì)》范玉順,曹軍威清華大學(xué)出版社,2000年9。

      3《網(wǎng)絡(luò)基礎(chǔ)設(shè)施技術(shù)及應(yīng)用》Nova科學(xué)出版社,2009年。

      4《網(wǎng)絡(luò)基礎(chǔ)設(shè)施與應(yīng)用技術(shù)》新科學(xué)出版社,2009年。

      5《網(wǎng)格數(shù)據(jù)流》Nova科學(xué)出版社,2008年。

      6《對(duì)于大規(guī)模分布式環(huán)境中的性能預(yù)測(cè)技術(shù)研究》Nova科學(xué)出版社,2007年。

      7《績(jī)效評(píng)估的自組織網(wǎng)格計(jì)算代理》Nova科學(xué)出版社,2007年。

      8《引力波數(shù)據(jù)分析:對(duì)工作流程的科學(xué)分析技術(shù)的使用為例》施普林格出版社,2007年。

      發(fā)表論文:

      英文:

      1. VOMES: a Virtual Organization Membership Evaluation System. J. Cao and Z. Wang. (submitted)

      2. Use of Agent-based Service Discovery for Resource Management in Metacomputing Environment. J. Cao, D. J. Kerbyson and G. R. Nudd. Proc. 7th Int. Euro-Par Conf., Manchester, UK, LNCS 2150, 882-886, 2001. (research note)

      3. Upper Limits on Gravitational Wave Emission from 78 Radio Pulsars. LIGO Scientific Collaboration, M. Kramer, and A. G. Lyne. Physical Review D, 76(4), 042001(20), 2007.

      4. Upper Limits from LIGO and TAMA Detectors on the Rate of Gravitational Wave Bursts. LIGO Scientific Collaboration and TAMA Collaboration. Physical Review D, 72(12), 122004(16), 2005.

      5. Upper Limit Map of a Background of Gravitational Waves. LIGO Scientific Collaboration. Physical Review D, 76(8), 082003(11), 2007.

      6. The Open Science Grid. R. Pordes for the Open Science Grid Consortium. Proc. Computing in High Energy and Nuclear Physics Conf., Interlaken, Switzerland, 2004.

      7. The Einstein@Home Search for Periodic Gravitational Waves in LIGO S4 Data. LIGO Scientific Collaboration. Physical Review D, 79(2), 022001(29), 2009.

      8. Technology Challenges of Cyberinfrastructure (in Chinese). J. Cao. Int. Academic Development, 5(2), 32-36, 2010.

      9. System Architecture of New CIMS Application Integration Platform (in Chinese). J. Cao, Y. Fan and C. Wu. J. Tsinghua University, 39(7), 68-71, 1999. (also in Proc. 5th China CIMS Conference, Chengdu, PRC, 1998)

      10. Storage Aware Resource Allocation for Grid Data Streaming Pipelines. W. Zhang, J. Cao, Y. Zhong, L. Liu, and C. Wu. Proc. 2008 IEEE Int. Conf. on Networking, Architecture, and Storage, Chongqing, China, 179-180, 2008. (short paper)

      11. Status of LCGT. LCGT Collaboration. Classical and Quantum Gravity, 27(8), 084004(8), 2010.

      12. Stacked Search for Gravitational Waves from the 2006 SGR 1900+14 Storm. LIGO Scientific Collaboration. The Astrophysical J. Letters, 701(2), L68-L74, 2009.

      13. Self-Organizing Agents for Grid Load Balancing. J. Cao. Proc. 5th IEEE/ACM Int. Workshop on Grid Computing, conj. Supercomputing Conf., Pittsburgh, PA, USA, 388-395, 2004. (also as Technical Report LR-04-205, NEC Corporation, 2004)

      14. Searching for a Stochastic Background of Gravitational Waves with LIGO. LIGO Scientific Collaboration. The Astrophysical J., 659(2), 918-930, 2007.

      15. Searches for Periodic Gravitational Waves from Unknown Isolated Sources and Scorpius X-1: Results from the Second LIGO Science Run. LIGO Scientific Collaboration. Physical Review D, 76(8), 082001(35), 2007.

      16. Searches for Gravitational Waves from Known Pulsars with S5 LIGO Data. LIGO Scientific Collaboration and Virgo Collaboration. The Astrophysical J., 713(1), 671-685, 2010.

      17. Search of S3 LIGO Data for Gravitational Wave Signals from Spinning Black Hole and Neutron Star Binary Inspirals. LIGO Scientific Collaboration. Physical Review D, 78(4), 042002(19), 2008.

      18. Search for High Frequency Gravitational Wave Bursts in the First Calendar Year of LIGO's Fifth Science Run. LIGO Scientific Collaboration. Physical Review D, 80(10), 102002(14), 2009.

      19. Search for Gravitational-wave Inspiral Signals Associated with Short Gamma-Ray Bursts during LIGO's Fifth and Virgo's First Science Run. LIGO Scientific Collaboration and Virgo Collaboration. The Astrophysical J., 715(2), 1453-1461, 2010.

      20. Search for Gravitational-wave Bursts in the First Year of the Fifth LIGO Science Run. LIGO Scientific Collaboration. Physical Review D, 80(10), 102001(26), 2009.

      21. Search for Gravitational-wave Bursts in LIGO Data from the Fourth LSC Science Run. LIGO Scientific Collaboration. Classical and Quantum Gravity, 24(22), 5343-5369, 2007.

      22. Search for Gravitational-wave Bursts Associated with Gamma-ray Bursts using Data from LIGO Science Run 5 and Virgo Science Run 1. LIGO Scientific Collaboration and Virgo Collaboration. The Astrophysical J., 715(2), 1438-1452, 2010.

      23. Search for Gravitational Waves from Low Mass Compact Binary Coalescence in 186 Days of LIGO's Fifth Science Run. LIGO Scientific Collaboration. Physical Review D, 80(4), 047101(8), 2009.

      24. Search for Gravitational Waves from Low Mass Binary Coalescences in the First Year of LIGO's S5 Data. LIGO Scientific Collaboration. Physical Review D, 79(12), 122001(14), 2009.

      25. Search for Gravitational Waves from Compact Binary Coalescence in LIGO and Virgo Data from S5 and VSR1. LIGO Scientific Collaboration and Virgo Collaboration. Physical Review D, 82(10), 102001(11), 2010.

      26. Search for Gravitational Waves from Binary Inspirals in S3 and S4 LIGO Data. LIGO Scientific Collaboration. Physical Review D, 77(6), 062002(13), 2008.

      27. Search for Gravitational Waves from Binary Black Hole Inspirals in LIGO Data. LIGO Scientific Collaboration. Physical Review D, 73(6), 062001(17), 2006.

      28. Search for Gravitational Waves Associated with 39 Gamma-Ray Bursts Using Data from the Second, Third, and Fourth LIGO Runs. LIGO Scientific Collaboration. Physical Review D, 77(6), 062004(22), 2008.

      29. Search for Gravitational Wave Ringdowns from Perturbed Black Holes in LIGO S4 Data. LIGO Scientific Collaboration. Physical Review D, 80(6), 062001(9), 2009.

      30. Search for Gravitational Wave Radiation Associated with the Pulsating Tail of the SGR 1806-20 Hyperflare of 27 December 2004 using LIGO. LIGO Scientific Collaboration. Physical Review D, 76(6), 062003(12), 2007.

      31. Search for Gravitational Wave Bursts in LIGO's Third Science Run. LIGO Scientific Collaboration. Classical and Quantum Gravity, 23(8), S29-S39, 2006.

      32. Search for Gravitational Wave Bursts from Soft Gamma Repeaters. LIGO Scientific Collaboration, S. Barthelmy, N. Gehrels, K. C. Hurley, and D. Palmer. Physical Review Letters, 101(21), 211102(6), 2008.

      33. Search for Gravitational Wave Bursts from Six Magnetars. LIGO Scientific Collaboration and Virgo Collaboration. (submitted)

      34. Scheduling Remote Access to Scientific Instruments in Cyberinfrastructure for Education and Research. J. Yin, J. Cao, Y. Wang, L. Liu, and C. Wu. Proc. 7th IEEE/ACM Int. Symp. on Cluster Computing and the Grid, Rio de Janeiro, Brazil, 426-433, 2007.

      35. Scheduling Data Blocks for Concurrent and Storage-aware Grid Data Streaming. W. Zhang, J. Cao, Y. Zhong, L. Liu, and C. Wu. Int. J. Grid and Utility Computing, 2011.

      36. Research of Operation Administration System Agents of Integration Platform (in Chinese). J. Cao, Y. Fan and C. Wu. CIMS, 5(3), 39-43, 1999.

      37. Remote Computing Resource Management from Small Devices by Utilising WSRF. S. Huang, M. VanHilst, J. Cao, and J. Mangs. Int. J. Computer Aided Engineering and Technology, Special Issue on Smart Homes: Technologies and Applications, 2(2-3), 199-217, 2010.

      38. Redundant Virtual Machines Management in Virtualized Cloud Platform. F. Zhang, J. Cao, C. Hong, L. Liu and C. Wu. Int. J. Modeling, Simulation, and Scientific Computing, 2011.

      39. Real-time Gravitational-wave Burst Search for Multi-messenger Astronomy. J. Cao and J. Li. Int. J. Modern Physics D, 2011.

      40. Queue Scheduling and Advance Reservations with COSY. J. Cao and F. Zimmermann. Proc. 18th IEEE Int. Parallel & Distributed Processing Symp., Santa Fe, NM, USA, 63, 2004. (also as Technical Report LR-03-189, NEC Corporation, 2003)

      41. Qualification Evaluation in Virtual Organizations Based on Fuzzy Analytic Hierarchy Process. F. Zhang, J. Cao, L. Liu, and C. Wu. Proc. 7th Int. Conf. on Grid and Cooperative Computing, Shenzhen, China, 539-547, 2008.

      42. Predictions for the Rates of Compact Binary Coalescences Observable by Ground-based Gravitational-wave Detectors. LIGO Scientific Collaboration, Virgo Collaboration, and K Belczynski. Classical and Quantum Gravity, 27(17), 173001(25), 2010.

      43. Performance-based Workload Management for Grid Computing. D. P. Spooner, S. A. Jarvis, J. Cao, G. R. Nudd, S. Saini and D. J. Kerbyson. Proc. 3rd Annual Symp. of Los Alamos Computer Science Institute, Santa Fe, NM, USA, 2002.

      44. Performance-aware Workflow Management for Grid Computing. D. P. Spooner, J. Cao, S. A. Jarvis, L. He, and G. R. Nudd. The Computer J., Special Focus - Grid Performability, 48(3), 347-357, 2005.

      45. Performance Prediction Technology for Agent-based Resource Management in Grid Environments. J. Cao, S. A. Jarvis, D. P. Spooner, J. D. Turner, D. J. Kerbyson and G. R. Nudd. Proc. 11th IEEE Heterogeneous Computing Workshop, conj. 16th IEEE Int. Parallel & Distributed Processing Symp., Fort Lauderdale, FL, USA, 86, 2002.

      46. Performance Prediction and its use in Parallel and Distributed Computing Systems. S. A. Jarvis, D. P. Spooner, H. N. Lin Choi Keung, J. Cao, S. Saini, and G. R. Nudd. Future Generation Computer Systems, Special Section on System Performance Analysis and Evaluation, 22(7), 745-754, 2006.

      47. Performance Prediction and its use in Parallel and Distributed Computing Systems. S. A. Jarvis, D. P. Spooner, H. N. Lin Choi Keung, J. Cao, S. Saini, and G. R. Nudd. Proc. 2nd Int. Workshop on Performance Modeling, Evaluation, and Optimization of Parallel and Distributed Systems, conj. 17th IEEE Int. Parallel & Distributed Processing Symp., Nice, France, 276, 2003.

      48. Performance Prediction and Evaluation. S. Jarvis, M. Coppola, J. Cao, and D. Kerbyson. Proc. 16th Int. Euro-Par Conf. on Parallel Processing, LNCS 6271 PART 1, 86-87, 2010.

      49. Performance Optimization of Temporal Reasoning for Grid Workflows Using Relaxed Region Analysis. K. Xu, J. Cao, L. Liu, and C. Wu. Proc. 22nd IEEE Int. Conf. on Advanced Information Networking and Applications Workshops, GinoWan, Okinawa, Japan, 187-194, 2008.

      50. Performance Modeling of Parallel and Distributed Computing Using PACE. J. Cao, D. J. Kerbyson, E. Papaefstathiou and G. R. Nudd. Proc. 19th IEEE Int. Performance, Computing and Communications Conf., Phoenix, AZ, USA, 485-492, 2000.

      51. Performance Evaluation of an Agent-Based Resource Management Infrastructure for Grid Computing. J. Cao, D. J. Kerbyson and G. R. Nudd. Proc. 1st IEEE/ACM Int. Symp. on Cluster Computing and the Grid, Brisbane, Australia, 311-318, 2001.

      52. Ordinal Optimized Scheduling of Scientific Workflows in Elastic Compute Clouds. F. Zhang, J. Cao, K. Hwang, and C. Wu. (submitted)

      53. Observation of a Kilogram-scale Oscillator near its Quantum Ground State. LIGO Scientific Collaboration. New Journal of Physics, 11(7), 073032(13), 2009.

      54. Modelling of ASCI High Performance Applications Using PACE. J. Cao, D. J. Kerbyson, E. Papaefstathiou and G. R. Nudd. Proc. 15th Annual UK Performance Engineering Workshop, Bristol, UK, 413-424, 1999.

      55. Localised Workload Management using Performance Prediction and QoS Contracts. D. P. Spooner, J. Cao, J. D. Turner, H. N. Lin Choi Keung, S. A. Jarvis and G. R. Nudd. Proc. 18th Annual UK Performance Engineering Workshop, Glasgow, UK, 69-80, 2002.

      56. Local Grid Scheduling Techniques Using Performance Prediction. D. P. Spooner, S. A. Jarvis, J. Cao, S. Saini and G. R. Nudd. IEE Proceedings - Computers and Digital Techniques, 150(2), 87-96, 2003.

      57. LIGO: The Laser Interferometer Gravitational-Wave Observatory. LIGO Scientific Collaboration. Reports on Progress in Physics, 72(7), 076901(25), 2009.

      58. Joint LIGO and TAMA300 Search for Gravitational Waves from Inspiralling Neutron Stars. LIGO Scientific Collaboration and TAMA Collaboration. Physical Review D, 73(10), 102002(10), 2006.

      59. Implications for the Origin of GRB 070201 from LIGO Observations. LIGO Scientific Collaboration and K. C. Hurley. The Astrophysical J., 681(2), 1419-1430, 2008.

      60. Implementation of Grid-enabled Medical Simulation Applications Using Workflow Techniques. J. Cao, J. Fingberg, G. Berti, and J. G. Schmidt. Proc. 2nd Int. Workshop on Grid and Cooperative Computing, Shanghai, China, LNCS 3032, 34-41, 2003. (also as Technical Report LR-03-185, NEC Corporation, 2003)

      61. How Are You Feeling? A Social Network Model to Monitor the Health of Post-Operative and Remote Patients. J. J. Mulcahy, S. Huang, J. Cao, and F. Zhang. Proc. IEEE Int. Systems Conf., Montreal, Canada, 2011.

      62. High Performance Service Discovery in Large-Scale Multi-Agent and Mobile-Agent Systems. J. Cao, D. J. Kerbyson and G. R. Nudd. Int. J. Software Engineering and Knowledge Engineering, Special Issue on Multi-Agent Systems and Mobile Agents, 11(5), 621-641, 2001.

      63. GridFlow: Workflow Management for Grid Computing. J. Cao, S. A. Jarvis, S. Saini and G. R. Nudd. Proc. 3rd IEEE/ACM Int. Symp. on Cluster Computing and the Grid, Tokyo, Japan, 198-205, 2003.

      64. Grid Resource Management and Scheduling for Data Streaming Applications. W. Zhang, J. Cao, Y. Zhong, L. Liu, and C. Wu. Computing and Informatics, 29, 1001-1028, 2010.

      65. Grid Load Balancing Using Intelligent Agents. J. Cao, D. P. Spooner, S. A. Jarvis, and G. R. Nudd. Future Generation Computer Systems, Special Issue on Intelligent Grid Environment: Principles and Applications, 21(1), 135-149, 2005.

      66. Grid Information Services Using Software Agents. H. N. Lin Choi Keung, J. Cao, D. P. Spooner, S. A. Jarvis and G. R. Nudd. Proc. 18th Annual UK Performance Engineering Workshop, Glasgow, UK, 187-198, 2002.

      67. Grid Enabled LIGO Data Monitoring. J. Cao, E. Katsavounidis, and J. Zweizig. Proc. IEEE/ACM Supercomputing Conf., Seattle, WA, USA, 2005. (poster, also as LIGO Document No. G050573-00-E, 2005)

      68. Fuzzy Allocation of Fine-grained Compute Resources for Grid Data Streaming Applications. W. Zhang, J. Cao, Y. Zhong, L. Liu, and C. Wu. Int. J. Grid and High Performance Computing, 2(4), 1-11, 2010.

      69. Flexible Software Systems (in Chinese). J. Cao and Y. Fan. Computer Science, 26(2), 74-77, 1999.

      70. First Search for Gravitational Waves from the Youngest Known Neutron Star. LIGO Scientific Collaboration. The Astrophysical J., 722(2), 1504-1513, 2010.

      71. First LIGO Search for Gravitational Wave Bursts from Cosmic (Super)strings. LIGO Scientific Collaboration. Physical Review D, 80(6), 062002(11), 2009

      72. First Joint Search for Gravitational-wave Bursts in LIGO and GEO600 Data. LIGO Scientific Collaboration. Classical and Quantum Gravity, 25(24), 245008(21), 2008.

      73. First Cross-Correlation Analysis of Interferometric and Resonant-Bar Gravitational-Wave Data for Stochastic Backgrounds. LIGO Scientific Collaboration and ALLEGRO Collaboration. Physical Review D, 76(2), 022001(17), 2007.

      74. Fast Autotuning Configurations of Parameters in Distributed Computing Systems Using Ordinal Optimization. F. Zhang, J. Cao, L. Liu, and C. Wu. Proc. 38th Int. Conf. on Parallel Processing Workshops, Vienna, Austria, 190-197, 2009.

      75. Evaluation of Advertising Effectiveness Using Agent-Based Modeling and Simulation. J. Cao. Proc. 2nd UK Workshop of SIG on Multi-Agent Systems, Bristol, UK, 1999.

      76. Enhanced Adaptive Scheduling for the Grid Harvest Service. W. Sliamu, Y. Hou, and J. Cao. Proc. WRI World Congress on Software Engineering, Vol. 1, Xiamen, China, 35-39, 2009.

      77. Enabling Access to WSRF from Mobile Devices. J. C. Mangs, S. Huang, and J. Cao. Proc. 4th Int. Conf. on Semantics, Knowledge and Grid, Beijing, China, 392-395, 2008.

      78. Einstein@Home Search for Periodic Gravitational Waves in Early S5 LIGO Data. LIGO Scientific Collaboration and D. P. Anderson. Physical Review D, 80(4), 042003(14), 2009.

      79. Dynamic Controlling of Data Streaming Applications for Cloud Computing. J. Cao and W. Zhang. (submitted)

      80. Dynamic Application Integration Using Agent-Based Operational Administration. J. Cao, D. J. Kerbyson and G. R. Nudd. Proc. 5th Int. Conf. on the Practical Application of Intelligent Agents and Multi-Agent Technology, Manchester, UK, 393-396, 2000.

      81. Development of a DMT Monitor for Statistical Tracking of Gravitational-wave Burst Triggers Generated from the Omega Pipeline. J. Li and J. Cao. Proc. 9th Asia-Pacific Int. Conf. on Gravitation and Astrophysics, Wuhan, China, 92-101, 2010.

      82. Cost Estimation of Advance Reservations over Queued Jobs: a Quantitative Study. C. Zhao, J. Cao, H. Wu, and F. Zhang. Int. J. Modeling, Simulation, and Scientific Computing, 1(3), 317-332, 2010.

      83. Concurrent and Storage-Aware Data Streaming for Data Processing Workflows in Grid Environments. W. Zhang, J. Cao, Y. Zhong, L. Liu, and C. Wu. Tsinghua Science and Technology, 15(3), 335-346, 2010.

      84. Committee-based Evaluation and Selection of Grid Resources for QoS Improvement. Z. Wang and J. Cao. Proc. 10th IEEE/ACM Int. Conf. on Grid Computing, Banff, Alberta, Canada, 138-144, 2009.

      85. Cloud Manufacturing: a New Service-oriented Networked Manufacturing Model (in Chinese). B. Li, L. Zhang, S. Wang, F. Tao, J. Cao, X. Jiang, X. Song, and X. Chai. CIMS, 16(1), 1-8, 2010.

      86. Calibration of the LIGO Gravitational Wave Detectors in the Fifth Science Run. LIGO Scientific Collaboration. Nuclear Instruments and Methods in Physics Research A, 624(1), 223-240, 2010.

      87. Block-based Concurrent and Storage-aware Data Streaming for Grid Applications with Lots of Small Files. W. Zhang, J. Cao, Y. Zhong, L. Liu, and C. Wu. Proc. 1st Int. Workshop on Service-Oriented P2P Networks and Grid Systems, conj. 9th IEEE Int. Symp. on Cluster Computing and the Grid, Shanghai, China, 538-543, 2009.

      88. Beating the Spin-down Limit on Gravitational Wave Emission from the Crab Pulsar. LIGO Scientific Collaboration. The Astrophysical J. Letters, 683(1), L45-L49, 2008.

      89. Astrophysically Triggered Searches for Gravitational Waves: Status and Prospects. LIGO Scientific Collaboration and Virgo Collaboration. Classical and Quantum Gravity, 25(11), 114051(12), 2008.

      90. ASTROD Optimized for Gravitational Wave Detection: ASTROD-GW. ASTROD Collaboration. Proc. 38th COSPAR Scientific Assembly, Bremen, Germany, 2010.

      91. ASTROD Optimized for Gravitational Wave Detection: ASTROD-GW (in Chinese). ASTROD Collaboration. Proc. 6th Deep-Space Exploration Annual Meeting, Sanya, China, 2009.

      92. ARMSim: a Modeling and Simulation Environment for Agent-based Grid Computing. J. Cao. SIMULATION, Special Issue on Modeling and Simulation Applications in Cluster and Grid Computing, 80(4-5), 221-229, 2004.

      93. ARMS: an Agent-based Resource Management System for Grid Computing. J. Cao, S. A. Jarvis, S. Saini, D. J. Kerbyson and G. R. Nudd. Scientific Programming, Special Issue on Grid Computing, 10(2), 135-148, 2002.

      94. Application of Support Vector Machines to Multivariate Gravitational-wave Veto Analysis. W. Zhen, J. Cao, L. Blackburn, E. Katsavounidis, and X. Wang. Classical and Quantum Gravity, 2011.

      95. Application Characterisation Using a Lightweight Transaction Model. D. P. Spooner, J. D. Turner, J. Cao, S. A. Jarvis and G. R. Nudd. Proc. 17th Annual UK Performance Engineering Workshop, Leeds, UK, 215-225, 2001.

      96. An Upper Limit on the Stochastic Gravitational-Wave Background of Cosmological Origin. LIGO Scientific Collaboration and Virgo Collaboration. Nature, 460(7258), 990-994, 2009.

      97. An Integrated Resource Management and Scheduling System for Grid Data Streaming Applications. W. Zhang, J. Cao, Y. Zhong, L. Liu, and C. Wu. Proc. 9th IEEE/ACM Int. Conf. on Grid Computing, Tsukuba, Japan, 258-265, 2008.

      98. AMREF: An Adaptive MapReduce Framework for Real Time Applications. F. Zhang, J. Cao, X. Song, H. Cai, and C. Wu. Proc. 9th Int. Conf. on Grid and Cloud Computing, Nanjing, China, 157-162, 2010.

      99. All-sky Search for Periodic Gravitational Waves in LIGO S4 Data. LIGO Scientific Collaboration. Physical Review D, 77(2), 022001(38), 2008.

      100. All-sky Search for Gravitational-wave Bursts in the First Joint LIGO-GEO-Virgo Run. LIGO Scientific Collaboration and Virgo Collaboration. Physical Review D, 81(10), 102001(20), 2010.

      101. All-sky LIGO Search for Periodic Gravitational Waves in the Early S5 Data. LIGO Scientific Collaboration. Physical Review Letters, 102(11), 111102(6), 2009.

      102. AIGO: a Southern Hemisphere Detector for the Worldwide Array of Ground Based Interferometric Gravitational Wave Detectors. AIGO Collaboration. Classical and Quantum Gravity, 27(8), 084005(12), 2010.

      103. Agile Data Streaming for Grid Applications. W. Zhang, J. Cao, Y. Zhong, L. Liu, and C. Wu. Proc. 2nd Int. Workshop on Personalization in Grid and Service Computing, conj. 7th Int. Conf. on Grid and Cooperative Computing, Shenzhen, China, 739-746, 2008.

      104. Agent-based Resource Management for Grid Computing. J. Cao, D. P. Spooner, J. D. Turner, S. A. Jarvis, D. J. Kerbyson, S. Saini and G. R. Nudd. Proc. 2nd Int. Workshop on Agent based Cluster and Grid Computing, conj. 2nd IEEE/ACM Int. Symp. on Cluster Computing and the Grid, Berlin, Germany, 350-351, 2002. (short paper)

      105. Agent-Based Grid Load Balancing Using Performance-Driven Task Scheduling. J. Cao, D. P. Spooner, S. A. Jarvis, S. Saini and G. R. Nudd. Proc. 17th IEEE Int. Parallel & Distributed Processing Symp., Nice, France, 49, 2003.

      106. Agent-Aided Software Engineering of High Performance Applications. J. Cao. Proc. 12th Int. Conf. on Software & Systems Engineering and their Applications, Paris, France, 1999.

      107. Adjacent Matrix based Deduction for Grid Workflow Applications. F. Zhang, J. Cao, L. Liu, and C. Wu. Proc. 1st Int. Conf. on Networking and Distributed Computing, Hangzhou, China, 349-356, 2010.

      108. A Transaction Definition Language for Java Application Response Measurement. J. D. Turner, D. P. Spooner, J. Cao, S. A. Jarvis, D. N. Dillenberger and G. R. Nudd. J. Computer Resource Management, 105, 55-65, 2002.

      109. A Search for Gravitational Waves Associated with the August 2006 Timing Glitch of the Vela Pulsar. LIGO Scientific Collaboration and S. Buchner. Physical Review D, 83(4), 042001(13), 2010.

      110. A Joint Search for Gravitational Wave Bursts with AURIGA and LIGO. AURIGA Collaboration and LIGO Scientific Collaboration. Classical and Quantum Gravity, 25(9), 095004(16), 2008.

      111. A Finite Element Based Tool Chain for the Planning and Simulation of Maxillo-Facial Surgery. J. G. Schmidt, G. Berti, J. Fingberg, J. Cao, and G. Wollny. Proc. 4th European Congress on Computational Methods in Applied Sciences and Engineering, Jyvaskyla, Finland, 2004. (also as Technical Report LR-04-197, NEC Corporation, 2004)

      中文:

      1 云制造——面向服務(wù)的網(wǎng)絡(luò)化制造新模式 李伯虎; 張霖; 王時(shí)龍; 陶飛; 曹軍威; 姜曉丹; 宋曉; 柴旭東 北京航空航天大學(xué)復(fù)雜產(chǎn)品先進(jìn)制造系統(tǒng)教育部工程研究中心; 北京仿真中心; 重慶大學(xué)機(jī)械工程學(xué)院; 清華大學(xué)信息技術(shù)研究院; 北京慧點(diǎn)科技開(kāi)發(fā)有限公司 【期刊】計(jì)算機(jī)集成制造系統(tǒng) 2010-01-15

      2 集成平臺(tái)運(yùn)控系統(tǒng)代理模型研究 曹軍威; 范玉順; 吳澄 清華大學(xué)自動(dòng)化系 【期刊】計(jì)算機(jī)集成制造系統(tǒng)-CIMS 1999-06-30

      3 新一代 CIMS應(yīng)用集成平臺(tái)系統(tǒng)體系結(jié)構(gòu) 曹軍威; 范玉順; 吳澄 清華大學(xué)自動(dòng)化系 【期刊】清華大學(xué)學(xué)報(bào)(自然科學(xué)版) 1999-07-10

      4 柔性軟件系統(tǒng)的概念、方法與實(shí)踐 曹軍威; 范玉順 清華大學(xué)CIMS工程研究中心; 清華大學(xué)CIMS工程研究中心 北京 【期刊】計(jì)算機(jī)科學(xué) 1999-02-15

      5 ASTROD空間引力波探測(cè)優(yōu)化方案:ASTROD-GW 倪維斗; 門金瑞; 梅曉紅; 雷成明; 董瑤; A.Pulido Paton; 董鵬; 王剛; 黃超光; 龔雪飛; 張楊; 王海濤; 彭秋和; 曹軍威; 王立; 侯欣賓; 張慶祥; 張曉敏; Hansjrg Dittus; Jian Guo; Claus Lammerzahl; Diana Shaul; Timothy Sumner 【會(huì)議】中國(guó)宇航學(xué)會(huì)深空探測(cè)技術(shù)專業(yè)委員會(huì)第六屆學(xué)術(shù)年會(huì)暨863計(jì)劃“深空探測(cè)與空間實(shí)驗(yàn)技術(shù)”重大項(xiàng)目學(xué)術(shù)研討會(huì)論文集 2009-12-01

      榮譽(yù)獎(jiǎng)勵(lì):


      1、2008年入選教育部新世紀(jì)優(yōu)秀人才支持計(jì)劃。

      資料更新中……

      媒體報(bào)道:


      曹軍威:物聯(lián)時(shí)代的新探索

      曹軍威 博士,現(xiàn)任清華大學(xué)信息技術(shù)研究院研究員、院務(wù)委員會(huì)副主任,美國(guó)麻省理工學(xué)院訪問(wèn)科學(xué)家。長(zhǎng)期致力于基礎(chǔ)架構(gòu)科學(xué)、技術(shù)與應(yīng)用研究。從事應(yīng)用集成、網(wǎng)格計(jì)算、海量數(shù)據(jù)分析、云計(jì)算、物聯(lián)網(wǎng)、智能電網(wǎng)等方面的基礎(chǔ)研究、成果轉(zhuǎn)化和產(chǎn)業(yè)合作,致力于從基礎(chǔ)架構(gòu)的獨(dú)特視角總結(jié)其中的一般規(guī)律,開(kāi)發(fā)共性關(guān)鍵技術(shù),并在教育、制造、電力、石化等行業(yè)獲得廣泛應(yīng)用。

      物聯(lián)網(wǎng)被認(rèn)為是繼計(jì)算機(jī)、互聯(lián)網(wǎng)之后,世界信息產(chǎn)業(yè)的第三次浪潮,它集傳感、通信、網(wǎng)絡(luò)、計(jì)算、控制技術(shù)為一體,應(yīng)用領(lǐng)域遍及國(guó)民經(jīng)濟(jì)和社會(huì)服務(wù)的各個(gè)方面,如智能電網(wǎng)、智能交通、現(xiàn)代物流、數(shù)字醫(yī)療、節(jié)能環(huán)保、精準(zhǔn)農(nóng)業(yè)等,成為我國(guó)未來(lái)發(fā)展的戰(zhàn)略新興產(chǎn)業(yè)。

      計(jì)算機(jī)實(shí)現(xiàn)了信息和資源的數(shù)字化,互聯(lián)網(wǎng)使得信息的傳遞和共享成為可能,那么物聯(lián)網(wǎng)發(fā)展的內(nèi)在動(dòng)因是什么呢?清華大學(xué)信息技術(shù)研究院研究員曹軍威和他的團(tuán)隊(duì)一直致力于從基礎(chǔ)架構(gòu)(Infrastructure)的獨(dú)特視角開(kāi)展物聯(lián)網(wǎng)技術(shù)與應(yīng)用研究,并指出物聯(lián)網(wǎng)興起的內(nèi)在動(dòng)因是21世紀(jì)新一輪基礎(chǔ)架構(gòu)化對(duì)資源深度互聯(lián)的需求。

      “數(shù)聯(lián)”到“物聯(lián)”的跨越

      技術(shù)的最新挑戰(zhàn)往往最先出現(xiàn)在重大科學(xué)前沿問(wèn)題的探索過(guò)程中,比如Web的發(fā)明源于歐洲核子研究中心CERN。在回國(guó)工作之前,曹軍威曾經(jīng)在美國(guó)麻省理工學(xué)院空間研究中心工作過(guò)兩年多,開(kāi)展愛(ài)因斯坦引力波探測(cè)和數(shù)據(jù)分析工作。當(dāng)時(shí),美國(guó)提出新一輪的基礎(chǔ)架構(gòu)化將以信息技術(shù)為引擎,主要指基于分布計(jì)算機(jī)、信息和通信技術(shù)的基礎(chǔ)架構(gòu),稱為信息基礎(chǔ)架構(gòu)(Cyberinfrastructure),其對(duì)于知識(shí)經(jīng)濟(jì)的重要性可以與傳統(tǒng)基礎(chǔ)架構(gòu)對(duì)工業(yè)經(jīng)濟(jì)的支撐作用相比擬。

      當(dāng)時(shí)美國(guó)建成了世界上精度最高的激光干涉引力波天文臺(tái)LIGO,希望能直接探測(cè)和驗(yàn)證愛(ài)因斯坦廣義相對(duì)論所預(yù)言的引力波的存在。天文臺(tái)實(shí)時(shí)采集上萬(wàn)個(gè)傳感器的數(shù)據(jù),采樣頻率最高達(dá)每秒16000次,匯集成上PB(1000TB)量級(jí)的引力波數(shù)據(jù),需要分布在美國(guó)和歐洲十幾個(gè)節(jié)點(diǎn)的高性能集群計(jì)算機(jī),為幾百名LIGO科學(xué)合作組織成員進(jìn)行引力波數(shù)據(jù)分析提供服務(wù),這本身就是一個(gè)廣域范圍內(nèi)集傳感、通信、存儲(chǔ)、計(jì)算等為一體的復(fù)雜系統(tǒng),是未來(lái)信息基礎(chǔ)架構(gòu)的典型代表。

      2006年,曹軍威回國(guó)后組織創(chuàng)建了清華大學(xué)LIGO工作組。在他的帶領(lǐng)下,工作組在引力波科學(xué)研究和LIGO實(shí)時(shí)數(shù)據(jù)分析方面的工作不斷取得進(jìn)展,得到國(guó)際同行的認(rèn)可。2009年9月,清華大學(xué)成為首個(gè)來(lái)自中國(guó)的LIGO科學(xué)合作組織成員,引力波數(shù)據(jù)分析結(jié)果發(fā)表在Nature等國(guó)際期刊上。

      在數(shù)字世界中,已經(jīng)有一些類似現(xiàn)實(shí)世界中基礎(chǔ)架構(gòu)的成功例子,比如通過(guò)簡(jiǎn)短的E-mail地址就可以實(shí)現(xiàn)通信;通過(guò)簡(jiǎn)單的域名就可以登錄相應(yīng)的Web主頁(yè)。這些實(shí)現(xiàn)了數(shù)字世界中的信息共享。而今數(shù)字世界的互聯(lián)發(fā)展進(jìn)一步提出了與物理系統(tǒng)實(shí)時(shí)交互的需求,傳統(tǒng)基礎(chǔ)架構(gòu)要實(shí)現(xiàn)深度互聯(lián)也必須以信息技術(shù)為引擎,從“數(shù)聯(lián)”到“物聯(lián)”的發(fā)展便成為必然。

      物聯(lián)網(wǎng)系統(tǒng)運(yùn)行中涉及一組關(guān)鍵過(guò)程,包括物理狀態(tài)感知、信息表示、信息傳輸、分析決策和控制執(zhí)行。物理狀態(tài)感知主要是傳感器網(wǎng)通過(guò)有線和無(wú)線的網(wǎng)絡(luò)傳感數(shù)據(jù)。操作執(zhí)行主要由數(shù)字控制系統(tǒng)負(fù)責(zé)完成。物聯(lián)網(wǎng)中,傳感器和控制器的分布很廣且數(shù)據(jù)量巨大。過(guò)去10年,對(duì)物聯(lián)網(wǎng)的研究大部分都集中于感知層的無(wú)線網(wǎng)絡(luò)技術(shù),但是,如何把各層網(wǎng)絡(luò)通信與應(yīng)用軟件緊密地融合在一起,從而開(kāi)發(fā)出高性能的物聯(lián)網(wǎng)應(yīng)用,仍然是一個(gè)巨大的挑戰(zhàn)。曹軍威和他的研究團(tuán)隊(duì)認(rèn)為,物聯(lián)網(wǎng)發(fā)展的內(nèi)在動(dòng)因是新一輪的基礎(chǔ)架構(gòu)化進(jìn)程對(duì)數(shù)字和物理資源深度互聯(lián)的需求。

      深化基礎(chǔ)架構(gòu)研究

      在物聯(lián)網(wǎng)技術(shù)興起的今天,曹軍威根據(jù)十多年的科研和實(shí)踐經(jīng)驗(yàn),指出要想加速物聯(lián)網(wǎng)相關(guān)技術(shù)的基礎(chǔ)架構(gòu)化進(jìn)程,基礎(chǔ)理論與方法的研究迫在眉睫;A(chǔ)架構(gòu)是如此重要,但迄今為止對(duì)于基礎(chǔ)架構(gòu)的論述還主要停留在定性描述的層面或者局限于特定領(lǐng)域,還沒(méi)有對(duì)基礎(chǔ)架構(gòu)通用共有的特性進(jìn)行定量、科學(xué)和系統(tǒng)的深入研究;A(chǔ)架構(gòu)學(xué)(Infrastructurology)是對(duì)不同基礎(chǔ)架構(gòu)的通用共有規(guī)律進(jìn)行深入研究的科學(xué),目的是為當(dāng)前以物聯(lián)網(wǎng)為代表的新一輪基礎(chǔ)架構(gòu)化進(jìn)程提供堅(jiān)實(shí)的理論依據(jù)、切實(shí)的方法指導(dǎo)和具體的技術(shù)實(shí)現(xiàn)。

      看似是不同行業(yè)產(chǎn)業(yè)的前沿問(wèn)題,實(shí)際上從基礎(chǔ)架構(gòu)化的角度進(jìn)行詮釋時(shí)都是相通的。定量、科學(xué)、系統(tǒng)地研究基礎(chǔ)架構(gòu)主要從時(shí)間和空間兩個(gè)維度上研究基礎(chǔ)架構(gòu)共通的演進(jìn)規(guī)律。這是之前任何單一學(xué)科或研究領(lǐng)域所未曾涉及的。曹軍威認(rèn)識(shí)到:一方面基礎(chǔ)架構(gòu)的形成需要時(shí)間,需要不斷成熟的技術(shù)作為支撐,同時(shí)還受到經(jīng)濟(jì)、政治、文化等非技術(shù)因素的影響,但從整體上看還是有一定的規(guī)律可以探索,一旦掌握了這些規(guī)律,便可以更好地指導(dǎo)和加速新的基礎(chǔ)架構(gòu)化進(jìn)程;另一方面,基礎(chǔ)架構(gòu)的空間分布也是有規(guī)律可循的,最為直觀的是大多數(shù)成熟的基礎(chǔ)架構(gòu)都采用分層樹(shù)狀結(jié)構(gòu),比如電網(wǎng)就分為輸電、供電、配電等幾個(gè)層次,互聯(lián)網(wǎng)上的Domain Name Service也是采用樹(shù)狀結(jié)構(gòu)等。當(dāng)然,基礎(chǔ)架構(gòu)學(xué)本身還是一門應(yīng)用基礎(chǔ)科學(xué)。相較于系統(tǒng)論或復(fù)雜性理論研究都是以一般意義上的系統(tǒng)為研究對(duì)象,基礎(chǔ)架構(gòu)雖然也是復(fù)雜系統(tǒng),但還是具有許多自身的特點(diǎn),需要結(jié)合和運(yùn)用基礎(chǔ)理論,采用不同的研究方法進(jìn)行深入探索。為了避免在開(kāi)始階段基礎(chǔ)架構(gòu)學(xué)的研究流于空泛,以特定領(lǐng)域、技術(shù)或應(yīng)用作為切入點(diǎn)和著手點(diǎn)是必經(jīng)之路。

      為了推動(dòng)基礎(chǔ)架構(gòu)學(xué)發(fā)展,進(jìn)而在物聯(lián)網(wǎng)技術(shù)及其應(yīng)用方面有所貢獻(xiàn),曹軍威迅速組建并發(fā)展起一支由20余人組成的高水平科研團(tuán)隊(duì)。近年來(lái),該團(tuán)隊(duì)獲得國(guó)家科技部“973”計(jì)劃、“863”計(jì)劃、教育部質(zhì)量工程和國(guó)家自然科學(xué)基金等10余項(xiàng)國(guó)家級(jí)科研項(xiàng)目的資助。曹軍威發(fā)表文章110余篇,為國(guó)內(nèi)外同行引用2200余次,申請(qǐng)專利6項(xiàng),并入選2008年教育部新世紀(jì)優(yōu)秀人才支持計(jì)劃。

      物聯(lián)網(wǎng)與智能電網(wǎng)

      除了在理論層面開(kāi)展基礎(chǔ)架構(gòu)學(xué)研究外,曹軍威和他的團(tuán)隊(duì)一直認(rèn)為智能電網(wǎng)是物聯(lián)網(wǎng)的第一應(yīng)用。在廣域范圍內(nèi)實(shí)現(xiàn)從感知到控制全過(guò)程的緊密耦合和深度互聯(lián),智能電網(wǎng)在物聯(lián)網(wǎng)應(yīng)用中的代表性是其他應(yīng)用所無(wú)法替代的。選擇電力物聯(lián)網(wǎng)應(yīng)用系統(tǒng)可以最大程度地驗(yàn)證和說(shuō)明物聯(lián)網(wǎng)技術(shù)的發(fā)展,這也是曹軍威和他的團(tuán)隊(duì)目前的工作重點(diǎn)。

      智能電網(wǎng)把現(xiàn)代先進(jìn)的傳感—通信—網(wǎng)絡(luò)—計(jì)算—控制技術(shù)應(yīng)用于電力系統(tǒng)以達(dá)到最大限度地提高設(shè)備效率,提高安全可靠性,節(jié)能減排,提高用戶的供電質(zhì)量,提高可再生能源的利用效率。目前,我國(guó)的GDP總量不到全世界的5%,卻耗費(fèi)全世界30%以上的鋼鐵、47%的水泥,而且增長(zhǎng)趨勢(shì)不減。照這樣下去,中國(guó)能源是不可能實(shí)現(xiàn)可持續(xù)發(fā)展的。智能電網(wǎng)的提出正是國(guó)家能源戰(zhàn)略和安全的需要。

      智能電網(wǎng)包括三個(gè)層次:第一層次,實(shí)現(xiàn)對(duì)電網(wǎng)運(yùn)行狀態(tài)、資產(chǎn)設(shè)備狀態(tài)和客戶用電信息的實(shí)時(shí)、全面和詳細(xì)監(jiān)視,消除監(jiān)測(cè)盲點(diǎn),提高電網(wǎng)可觀測(cè)性;第二層次,提供先進(jìn)的信息技術(shù)手段,實(shí)現(xiàn)對(duì)電力企業(yè)信息的傳輸和集成;第三層次,在信息集成的基礎(chǔ)上進(jìn)行高級(jí)分析,實(shí)現(xiàn)提高可靠性、降低成本、提高收益和效率的目標(biāo)。實(shí)際上這跟物聯(lián)網(wǎng)的基本結(jié)構(gòu)是不謀而合的。物聯(lián)網(wǎng)技術(shù)應(yīng)用于智能電網(wǎng)不是名詞游戲,也不是概念炒作,它是現(xiàn)代電力系統(tǒng)發(fā)展的內(nèi)在需求和必然趨勢(shì),是現(xiàn)代電力系統(tǒng)的發(fā)展新階段,將引發(fā)一系列新概念、新思路、新平臺(tái)、新前景,為電力系統(tǒng)技術(shù)的進(jìn)步帶來(lái)大的變革。

      電能是即時(shí)平衡的,過(guò)去電網(wǎng)靠“以不變應(yīng)萬(wàn)變”來(lái)達(dá)到動(dòng)態(tài)平衡,于是大量冗余造成浪費(fèi),現(xiàn)在充分發(fā)揮物聯(lián)網(wǎng)的監(jiān)控作用,有可能靠與負(fù)荷互動(dòng)來(lái)削“峰”填“谷”和減少熱備用,如果可行將引起從設(shè)計(jì)到運(yùn)行的巨大變革。如果基于物聯(lián)網(wǎng)技術(shù),使得測(cè)量和通訊問(wèn)題(指令下行僅數(shù)十毫秒)得到解決,通過(guò)控制達(dá)到瞬間平衡,那么迄今靠“試探”來(lái)達(dá)到新平衡的各種穩(wěn)定措施,如暫態(tài)穩(wěn)定、頻率穩(wěn)定、低頻/低壓減載控制等都應(yīng)該重新考慮。過(guò)去由于信息傳遞的困難,眾多研究者都力求選用測(cè)量本地量作為反饋來(lái)達(dá)到最好的控制效果,如果廣泛采用物聯(lián)網(wǎng)技術(shù),可以把電力系統(tǒng)中最佳可觀點(diǎn)的物理量送到最佳可控的控制器去,打破“不可觀”和“不可控”的約束,就會(huì)給電力系統(tǒng)的控制帶來(lái)革命。信息采集和信息傳遞得到解決,可望消除監(jiān)測(cè)盲點(diǎn),這樣,電力系統(tǒng)一些重要參數(shù)的隨機(jī)性、時(shí)變性、不可知性等可望克服,使過(guò)去只能“靠加大保守性來(lái)?yè)Q取可靠性”的一系列經(jīng)典難題有可能得到解決。

      面對(duì)電力物聯(lián)網(wǎng)所帶來(lái)的巨大發(fā)展空間,曹軍威和他的團(tuán)隊(duì)開(kāi)始大膽的思考和扎實(shí)的探索,并作為子課題負(fù)責(zé)人,獲得國(guó)家“973”計(jì)劃“物聯(lián)網(wǎng)基礎(chǔ)理論和設(shè)計(jì)方法研究”項(xiàng)目的資助,負(fù)責(zé)實(shí)現(xiàn)電力物聯(lián)網(wǎng)仿真驗(yàn)證平臺(tái),為物聯(lián)網(wǎng)理論和方法研究提供支撐環(huán)境。他們發(fā)現(xiàn),實(shí)現(xiàn)電力物聯(lián)網(wǎng)的主要挑戰(zhàn)在于廣域電網(wǎng)是一個(gè)復(fù)雜大系統(tǒng),硬件設(shè)備、廣域網(wǎng)絡(luò)和負(fù)荷用戶等多方面的因素帶來(lái)了很大的隨機(jī)性和不確定性,傳統(tǒng)解決問(wèn)題的方法已經(jīng)不能從實(shí)質(zhì)上解決廣域電網(wǎng)監(jiān)控的“精”和“準(zhǔn)”的問(wèn)題,需要依賴物聯(lián)網(wǎng)新技術(shù)保證信息傳遞的保真和忠實(shí),軟件編程的忠實(shí)和可信等。具體而言,需要研究在線、實(shí)時(shí)、海量數(shù)據(jù)的采集、傳輸與存儲(chǔ),變參數(shù)、變約束、多時(shí)間尺度下的數(shù)據(jù)分析與決策和變故障情況,以及變執(zhí)行機(jī)構(gòu)的分層系統(tǒng)控制技術(shù)等。曹軍威和他的團(tuán)隊(duì)堅(jiān)信,把現(xiàn)代信息技術(shù)廣泛引入到電力系統(tǒng)確實(shí)可以解決以前認(rèn)為無(wú)法解決的問(wèn)題,產(chǎn)生空前巨大的經(jīng)濟(jì)、社會(huì)效益。

      電力系統(tǒng)是傳統(tǒng)基礎(chǔ)架構(gòu)的典型代表,新一輪基礎(chǔ)架構(gòu)化進(jìn)程提出了智能電網(wǎng)的要求,而要實(shí)現(xiàn)電力系統(tǒng)發(fā)電和用電的互動(dòng),實(shí)現(xiàn)廣域電網(wǎng)感知到控制全過(guò)程的緊密耦合和深度互聯(lián),引入物聯(lián)網(wǎng)技術(shù)勢(shì)在必行。物聯(lián)網(wǎng)是從“數(shù)聯(lián)”向“物聯(lián)”延伸的產(chǎn)物,其產(chǎn)業(yè)發(fā)展離不開(kāi)具體行業(yè)應(yīng)用的依托和支持,實(shí)現(xiàn)電力物聯(lián)網(wǎng)是其中重要的發(fā)展方向。曹軍威和他的團(tuán)隊(duì)會(huì)沿著這個(gè)方向堅(jiān)定地走下去,探索和嘗試將物聯(lián)網(wǎng)和智能電網(wǎng)有機(jī)結(jié)合,力爭(zhēng)在基礎(chǔ)研究、成果轉(zhuǎn)化和產(chǎn)業(yè)合作等方面作出新的貢獻(xiàn)。

      文章來(lái)源:《科學(xué)時(shí)報(bào)》 2011-03-08

      文章錄入:zgkjcx    責(zé)任編輯:zgkjcx 
    1. 上一篇文章:

    2. 下一篇文章:
    3.  

      關(guān)于我們 | 加入收藏 | 聯(lián)系我們 | 設(shè)為首頁(yè) | 廣告說(shuō)明 | 合作項(xiàng)目

      名稱:科技創(chuàng)新網(wǎng) 工信部備案號(hào):京ICP備13040577號(hào)-2 京公網(wǎng)安備11010802045251號(hào)
      版權(quán)所有:未經(jīng)授權(quán)禁止復(fù)制或建立鏡像 E-Mail:zgkjcx08@126.com
      中文字幕日本视频精品一区,99re66热这里精品7,99精品视频在线观看,亚洲无码潮吹精品视频 96热在这里只有免费精品