論文專著:
出版專著(專輯):
1. Iryu Y., Cabioch G., Chen D.Z., Matsuda H., Piller W.E. (Eds.), Carbonates: Biological, Geochemical and Physical Processes Sedimentary Geology, Vol. 214, Amsterdan: Elsevier, B.V., 2009-05, 第 3 作者
2. Magnetic Susceptibility Application-A Window onto Ancient Environments and Climatic Variations, Geol Soc Spec. Publ., 414, Geological Society, London, 2015-03, 第 5 作者
3. 沉積學 姜在興 陳代釗 主編 礦物學,巖石學,地質學中國石化出版社,2022-04-01
發(fā)表(英文)論文:
1. Liu, K., Jiang, M.S., Zhang, L.Y., Chen, D.Z*., 2022. A new high-resolution palaeotemperature record during the Middle-Late Ordovician transition derived from conodont d18O palaeothermometry. Jour. Geol. Soc. Lond., doi: 10.1144/jgs2021-148.
2.Wang, Y.Z., Chen, D.Z*., Liu, M., Liu, K., Tang, P., 2022. Ediacaran carbon cycling and Shuram excursion recorded in the Tarim Block, northwestern China. Precambrian Res., 377: 106694, doi: 10.1016/j.precamres.2022.106694.
3.Liu, K., Jiang, M.S., Huang, T.Y., Zhang, L.Y., Wang, Y.Z., Chen, D.Z*., 2022. A reassessment on the timing and potential drivers of the major seawater 87Sr/86Sr drop in the Ordovician Period: New evidence from conodonts in China. Chemical Geol., 604: 120906, doi: 10.1016/j.chemgeo.2022.120906.
4.Liu, M., Chen, D.Z*., Jiang, L., Stockey, R., Aseal, D., Zhang, B., Liu, K., Yang, X.R., Yan, D.T., Planavski, N., 2022. Oceanic anoxia and extinction in the latest Ordovician. Earth Planet. Sci. Lett., 588: 117553, doi: 10.1016/j.epsl.2022.117553.
5.Jiang, L., Zhao, M.Y., Shen, A.J., Huang, L.L., Chen, D.Z., Cai, C.F., 2022. Pulses of stmosphere oxygenation during the Cambrian radiation of animals. Earth Planet. Sci. Lett., 590: 117565, doi: 10.1016/j.epsl.2022.117565.
6.Ge, X.T., Chen, D.Z*., Zhang, G.J., Huang, T.Y., Liu, M., El-Shafeiy, M., 2022. Marine redox evolution and organic accumulation in an intrashelf basin, NE Sichuan Basin during the Late Permian. Marine and Petroleum Geology, 140: 105633, doi: 10.1016/j.marpetgeo.2022.105633.
7.Tang, P., Chen, D.Z., Wang, Y.Z., Ding, Y., El-Shafeiy, M., Yang, B., 2022. Diagenesis of microbialite-dominated carbonates in the Upper Ediacaran Qigebrak Formation, NW Tarim Basin, China: Implications for reservoir development. Marine and Petroleum Geology, 136: 105476, doi: 10.1016/j.marpetgeo.2021.105476.
8.Liu, M., Ji, C.J., Hu, H.W., Xia, G.Q., Yi, H.S., Them II, T.R., Sun, P., Chen, D.Z., 2021. Variations in microbial ecology during the Toarcian Oceanic Anoxic Event (Early Jurassic) in the Qiangtang Basin, Tibet: Evidence from biomarker and carbon isotopes. Palaeogeography, Palaeoclimat. Palaeoecol., 580: 110626, doi: 10.1016/j.palaeo.2021.110626.
9.Zhou, X.Q., Chen, D.Z., Zhang, L.Y., Tang, D.J., Guo, C., 2021. Silica-rich seawater in the early Cambrian: Sedimentological evidence from bedded cherts. Terra Nova, 33: 494-501, doi: 10.1111/ter.12541
10.Yang, X.R., Yan, D.T., Chen, D.Z., Liu, M., She, X.H., Zhang, B., Zhang, L.W., Zhang, J.F., 2021. Spatiotemporal variation of sedimentary carbon and nitrogen isotopic compositions in the Yangtze shelf sea across the Ordovician-Silurian boundary. Paleogeogr. Palaeoclimat. Palaeoecol., 567: 110257, doi: 10.1016/j.palaeo.2021.110257
11.Zhang, G.J., Chen, D.Z*., Huang, K.J., Liu, M., Huang, T.Y., Yeasmin, R., Fu, Y., 2021. Dramatic attenuation of continental weathering during the Ediacaran-Cambrian transition: Implications for the climatic-oceanic-biological co-evolution. Global Planet. Change, 203: 103518, doi: 10.1016/j.gloplacha.2021.103518.
12.Zhang, G.J., Chen, D.Z*., Ding, Y., Huang, T.Y., 2021. Redox fluctuations and organic accumulation on the outer shelf of the Early Cambrian (Ages 2-3) Yangtze sea: Geochemical records on a seawad submarine sill. Geol. J., 56:1841–1857, doi: 10.1002/gj.4031.
13.Ding, Y., Li, Z.W., Liu, S.G*., Song, J.M., Zhou, X.Q., Sun, W., Zhang, X.H., Li, S.J., Ran, B., Peng, H.L., Li, Z.Q., Wang, H., Chen, D.Z*., 2021. Sequence stratigraphy and tectono-depositional evolution of a late Ediacaran epeiric platform in the upper Yangtze area, South China. Precam. Res., 354: 106077, doi: 10.1016/j.precamres.2020.106077.
14.Yang, X.R., Yan, D.T., Chen, D.Z., Liu, M., She, X.H., Zhang, J.F., Wei, X.S., Lu, Z.Y., 2020. Spatial variation of carbon isotope compositions of carbonate and organic organic matter from the Late Ordovician sedimentary succession in the Yangtze Platform, South China: Implications for sea-level eustasy and shoaling of marine chemocline. J. Asian Earth Sci., 202: 10454, doi: 10.1016/j.jseaes.2020.104540.
15.Zhang, L.Y., Chen, D.Z*., Kuang, G.D., Guo, Z.H., Zhang, G.J., Wang, X., 2020. Persistent oxic deep ocean conditions and frequent volcanic activities during the Frasnian-Famennian transition recorded in South China. Global Planet Change, 195: 10335, doi: 10.1016/j.gloplacha.2020.103350.
16.Zhang, L.Y., Chen, D.Z*., Huang, T.Y., Yu, H., Zhou, X.Q., Wang, J.G., 2020. An abrupt oceanic change and frequent climatic fluctuations across the Frasnian-Famennian transition of Late Devonian: Constraints from conodont Sr isotope. Geological Journal, 55: 4479-4492.
17.Guo, C., Chen D.Z*., Qing, H.R., Zhou, X.Q., Ding, Y., 2020. Early dolomitization and recrystallization of the Lower-Middle Ordovician carbonates in the western Tarim Basin (NW China). Marine Petrol. Geol., 111: 332-349.
18.Ding, Y., Chen, D.Z*., Zhou, X.Q., Huang, T.Y., Guo, C., Yeasmin, R., 2020. Paired d13Ccarb-d13Corg evolution of the Dengying Formation from the northeastern Guizhou and implications for stratigraphic correlation and Late Ediacaran carbon cycle. J. Earth Sci., 31 (2): 342-353. doi: 10.1007/s12583-018-0886-1.
19.Huang, T.Y., Chen, D.Z*., Ding, Y., Zhou, X.Q., Zhang, G.J., 2020. SIMS U-Pb zircon geochronological and carbon isotope chemostratigraphic constraints on the Ediacaran-Cambrian boundary succession in the Three Gorges area, South China. J. Earth Sci., 31 (1): 67-78. doi 10.1007/s12583-019-1233-x.
20.Yan, D.T., Chen, D.Z., Wang, Z.Z., Li, J., Yang, X.R., Zhang, B., 2019. Climatic and oceanic controlled deposition of Late Ordovician-Early Silurian black shales on the North Yangtze platform, South China. Marine Petroleum Geol., 110: 112-121.
21.Liu, M., Chen, D.Z*., Zhou, X.Q., Tang, D.J., Them II, T.R., Jiang, M.S., 2019. Upper Ordovician marine red limestones, Tarim Basin, NW China: A product of an oxygenated deep ocean and changing climate? Global and Planetary Change, 183: 103032, doi: 10.1016/j.gloplacha.2019.103032.
22.Huang, T.Y., Chen, D.Z.*, Fu, Y., Yeasmin, R., Guo, C., 2019. Development and evolution of a euxinic wedge on the ferruginous outer shelf of the early Cambrian Yangtze sea. Chem. Geol., 524: 259-271, doi: 10.1016/j.chemgeo.2019.06.24.
23.Ding, Y., Chen, D.Z*., Zhou, X.Q., Guo, C., Huang, T.Y., Zhang, G.J., 2019. Tectono-depositional pattern and evolution of the middle Yangtze Platform (South China) during the late Ediacaran. Precambrian Res., 333: 105426, doi: 10.1016/j.precamres.2019.105426.
24.Ding, Y., Chen, D.Z*., Zhou, X.Q., Guo, C., Huang, T.Y., Zhang, GJ., 2019. Cavity-filling dolomite speleothems and submarine cements in the Ediacaran Dengying microbialites, South China: Responses to high-frequency sea-level fluctuations in an ‘aragonite-dolomite sea’. Sedimentology, 66, 2511-2537, doi: 10.1111/sed.12605.
25.Wei, W., Zhu, X.M., Chen, D.Z., Zhu, S.F., He, M.W., Sun, S.F., 2019. Pore fluid and diagenetic evolution of carbonate cements in lacustrine carbonate-siliciclastic rocks: A case from the Lower Cretaceous of the Erenaoer Sag, Erlian Basin, NE China. J. Sed. Res., 89, 457-477.
26.Liu, M., Chen, D.Z*., Zhou, X.Q., Yuan, W., Jiang, M.S., Liu, L.J., 2019. Climatic and oceanic changes during the Middle-late Ordovician transition in the Tarim Basin, NW China and implications for the Great Ordovician Biodiversification Event. Palaeogeogr. Paleoclimat. Palaeoecol., 514: 522-535.
27.Ding, Y., Chen, D.Z*., Zhou, X.Q., Huang, T.Y., Guo, C., Yeasmin, R., 2018. Paired d13Ccarb-d13Corg evolution of the Dengying Formation from the northeastern Guizhou and implications for stratigraphic correlation and Late Ediacaran carbon cycle. J. Earth Sci., doi: 10.1007/s12583-018-0886-1.
28.Zou, C.N., Qiu, Z., Poulton, S.W., Dong, D.Z., Wang, H.Y., Chen, D.Z., Liu, B., Shi, Z.S., Tao, H.F., 2018. Ocean euxinia and climate change “double whammy” drove the Late Ordovician mass extinction. Geology, 46 (6): 635-538.
29.Wang, X., Liu, S.A., Wang, Z.R., Chen, D.Z., Zhang, L.Y., 2018. Zinc and strontium isotope evidence for climate cooling and constraints on the Frasnian-Famennian (~372 Ma) mass extinction. Palaeogeogr. Paleoclimat. Palaeoecol., 498: 68-82.
30.Dong, S.F., You, D.H., Guo, Z.H., Guo, C., Chen, D.Z*., 2018. Intense silicification of Ordovician carbonates in the Tarim Basin: Constraints from fluid inclusion Rb-Sr isotope dating and geochemistry of quartz. Terra Nova, 30: 406-413; doi: 10.1111/ter.12356.
31.Guo, C., Chen, D.Z*., Zhou, X.Q., Ding, Y., Wei, W.W., Zhang, G.J., 2018. Depositional facies and cyclic patterns in a subtidal-dominated ramp during the Early-Middle Ordovician in the western Tarim Basin (NW China). Facies, 64:16; doi: 10.1007/s10347-018-0529-0.
32.Guo, C., Chen D.Z*., Song, Y.F., Zhou, X.Q., Ding, Y., Zhang, G.J., Depositional environments and cyclicity of the Early Ordovician carbonate ramp in the western Tarim Basin (NW China). J. Asian Earth Sci., 158: 29-48.
33.De Vleeschouwer, D., da Silva, A.-C., Sinnesael, M., Chen, D.Z., Day, J., Whalen, M., Guo, Z.H., and Claeys, P. 2017. Timing and pacing of the Late Devonian mass extinction event regulated by eccentricity and obliquity. Nature Communications, 8:226, doi: 10.1038/s41467-017-02407-1.
34.Guo, C., Chen, D.Z*., Dong, S.F., Qian, Y.X., Liu, C.G., 2017. Early dolomitisation of the Lower-Middle Ordovician cyclic carbonates in northern Tarim Basin, NW China, Sci. China Earth Sci., 60 (7), 1283-1298; doi: 1007/s11430-017-9056-1.
35.Wei, W.W., Chen, D.Z*., Qing, H.R., Qian, Y.X., 2017. Hydrothermal dissolution of deeply buried Cambrian dolomite rocks and porosity generation: integrated with geological studies and reactive transport modeling in the Tarim Basin, China. Geofluids, 12, 1-19; doi: 10.1155/2017/9562507.
36.Dong, S.F., Chen, D.Z*., Zhou, X.Q., Qing, H.Q., 2017. Tectonically driven dolomitization of Cambrian to Lower Ordovician carbonates of the Quruqtagh area, north-eastern flank of Tarim Basin, north-western China. Sedimentology, 64, 1079-1106.
37.Yeasmin, R., Chen D.Z*., Fu, Y., Guo, C., 2017. Climatic forcing on the organic accumulation across the shelf during the Early Cambrian (Age 2 through 3) in the mid-upper Yangtze Block, NE Guizhou, South China. J. Asian Earth Sci., 134, 365-386.
38.Chen, D.Z., Guo, Z.H., Jiang, M.S., Guo, C., Ding, Y., 2016. Dynamics of cyclic carbonate deposition and biotic recovery on platforms during the Famennian of Late Devonian in Guangxi, South China: Constraints from high-resolution cycle and sequence stratigraphy. Palaeogeogr. Paleoclimat. Palaeoecol., 448, 245-265, doi: 10.1016/j.palaeo.2015.11.043.
39.Ma, X.P., Gong, Y.M., Chen, D.Z., Racki, G., Chen, X.Q., Liao, W.H., 2016. The Late Devonian Frasnian-Famennian Event in South China – Patterns and causes of extinctions, sea level changes, and isotope variations. Palaeogeogr. Paleoclimat. Palaeoecol., 448, 224-244, doi 10.1016/j.palaeo.2015.10.047.
40.Guo, C., Chen, D.Z.*, Qing, H.R., Dong, S.F., Li, G.R., Wang, D., Qian, Y.X., Liu, C.G., 2016. Multiple dolomitization and later hydrothermal alteration on the Upper Cambrian-Lower Ordovician carbonates in the northern Tarim Basin. Marine and Petroleum Geology, 72, 295-316.
41.Chen Daizhao, Zhou Xiqiang, Fu Yong, Wang Jianguo, Yan Detian, 2015. New U-Pb zircon ages of the Ediacaran-Cambrian boundary strata in South China. Terra Nova, 27 (1), 62-68.
42.Yu, H., Zhou, X.Q., Wang, J.G., Guo, C., Wei, H.Y., Chen, D.Z., 2015. The origin of bedding-parallel fibrous calcite veins in the Lower Permian Chisia Formation in western Hubei Province, South China. Sci. Bull., 60 (20), 1778-1786.
43.Whalen, M.T., Sliwinski, M.G., Payne, J., Day, J.E., Chen, D., Da Silva, A.-C., 2015. Chemostratigraphy and magnetic susceptibility of the Late Devonian Frasnian-Famennian transition in western Canada and southern China: Implications for carbon and nutrient cycling and mass extinction. In: Da Silva, A.C., Whalen, M., Hladil, J., Chadimova, L., Chen, D., Spassov, S., Boulvain, F., Devleeschouwer, X., 2015 (Eds.). Magnetic Susceptibility Application: A window onto Ancient Environments and Climatic Variations. Geological Society (London) Special Publication 414, 37-72.
44.Da Silva, A.C., Whalen, M., Hladil, J., Chadimova, L., Chen, D., Spassov, S., Boulvain, F., Devleeschouwer, X., 2015 (Eds.). Magnetic Susceptibility Application: A window onto Ancient Environments and Climatic Variations. Geological Society (London) Special Publication 414, pp. 283.
45.Zhang Yanqiu, Chen Daizhao*, Zhou Xiqiang, Guo Zenghui, Wei Wenwen, Mutti, M., 2015. Depositional facies and stratal cyclicity of dolomites in the Lower Qiulitag Group (Upper Cambrian) in northwestern Tarim Basin, NW China. Facies, 2015, 61 (1): 417, doi 10.1007/s10347-014-0417-1.
46.Zhou Xiqiang, Chen Daizhao*, Tang Dongjie, Dong Shaofeng, Guo chuan, Guo Zenghui, Zhang Yanqiu, 2015. Biogenic iron-rich filaments in the quartz veins in the uppermost Ediacaran Qigebulake Formation, Aksu area, northwestern Tarim Basin, China: Implications for iron oxidizers in subseafloor hydrothermal systems. Astrobiology, 15 (7), 523-537.
47.Zhou Xiqiang, Chen Daizhao*, Dong Shaofeng, Zhang Yanqiu, Guo Zenghui, 2015. Diagenetic barite deposits in the Yurtus Formation in Tarim Basin, NW China: Implications fro barium and sulfur cycling in the earliest Cambrian. Precambrian Research, 263, 79-87.
48.Zhou Xiqiang, Chen Daizhao*, Qing Hairuo, Qian Yixiong, Wang Dan, 2014. Submarine silica-rich hydrothermal activity during the earliest Cambrian in the Tarim Basin, Northwest China. International Geology Review, 56 (15), 1906-1918.
49.Xu, X., Mao, Q., Li, X., Pirajno, F., Qu, X., Deng, G., Chen, D., Zheng, B., Dong, L., 2014. Copper-zinc albite porphyry Hersai porphyry copper deposit, East Jungar, China: A transition between late magmatic and hydrothermal porphyry copper deposit. Ore Geol. Rev., 61, 141-156.
50.Da Silva A-C., Whalen, M.T., Hladil, J., Koptikova, L., Chen, D.Z., Spassov, S., Boulvain, F., Devleeschouwer, X., 2014. Application of magnetic susceptibility as a paleoclimatic proxy on Paleozoic sedimentary rocks and characterization of the magnetic signal – IGCP-580 projects and events. Episodes, 37 (2), 87-95.
51.Ji Congwei, Qing Hairuo, Chen Daizhao, Luo Ping, Jin Zhijun, Shao Longyi, 2013. Characteristics and dolomitization of Upper Cambrian to Lower Ordovician dolomite from the outcrop in Keping Uplift, western Tarim Basin, Northwest China. Acta Geologica Sinica-English Edition, 87 (4), 1005-1018.
52.Dong ShaoFeng, Chen Daizhao*, Qing HaiRuo, Jiang MaoSheng, Zhou XiQiang, 2013. In situ stable isotopic constraints on dolomitizing fluids for the hydrothermally-originated saddle dolomites at Keping, Tarim Basin. Chinese Science Bulletin, 58, 2877-2882.
53.Dong Shaofeng, Chen Daizhao*, Qing Hairuo, Zhou Xiqiang, Wang Dan, Guo Zenghui, Jiang Maosheng, Qian Yixiong, 2013. Hydrothermal alteration of dolostones in the Lower Ordovician, Tarim Basin, NW China: Multiple constraints from petrology, isotope geochemistry and fluid inclusion microthermometry. Marine and Petroleum Geology, 46, 270-286.
54.Chen Daizhao, Wang Jianguo, Racki, G., Li Hua, Wang Chengyuan, Ma Xueping, Whalen, M., 2013. Large sulphur isotopic perturbations and oceanic changes during the Frasnian-Famennian transition of the Late Devonian. J. Geol. Soci. Lond., 170, 465-476.
55.Qian Yixiong, You Donghua, Chen Daizhao, Qing Hairuo, He Zhiliang, Ma Yuchun, Tian Mian, Xi Binbin, 2012. The petrographic and geochemical signatures and implication of origin of the Middle and Upper Cambrian dolostones in eastern margin Tarim: Comparative studies with the Whirlpool Point of the Western Sedimentary Basin. Acta Petrologica Sinica, 28 (8), 2524-2541.
56.Wei Hengye, Chen Daizhao*, Wang Jianguo, Yu Hao, Tucker, M.E., 2012. Organic accumulation in the lower Chihsia Formation (Middle Permian) of South China: Constraints from pyrite morphology and multiple geochemical proxies. Palaeogeogr. Palaeoclimat. Palaeoecol., 353-355, 73-86.
57.Wei Hengye, Chen Daizhao, Yu Hao, Wang Jianguo, 2012. End-Guadalupian mass extinction and negative carbon isotope excursion at Xiaojiaba, Guangyuan, Sichuan. Sci. China-Earth Sci., 55, 1480-1488.
58.Wang Jianguo, Chen Daizhao, Yan Detian, Wei Hengye, Xiang Lei, 2012. Evolution from an anoxic to oxic deep ocean during the Ediacaran-Cambrian transition and implications for bioradiation. Chem. Geol., 306-307, 129-138.
59.Wang Jianguo, Chen Daizhao*, Wang Dan, Yan Detian, Zhou Xiqiang, Wang Qingchen, 2012. Petrology and geochemistry of chert on the marginal zone of Yangtze Platform, western Hunan, South China, during the Ediacaran-Cambrian transition. Sedimentology, 59, 809-829.
60.Yan Detian, Chen Daizhao*, Wang Qingchen, Wang Jianguo, 2012. Predominance of straitified anoxic Yangtze Sea interrupted by short-term oxygenation during the Ordo-Silurian transition. Chem. Geol., 291, 69-78.
61.Yan Detian, Chen Daizhao*, Wang Qingchen, Wang Jianguo, 2010. Large-scale climatic fluctuations in the latest Ordovician on Yangzt block, south China. Geology, 38, 599-602.
62.Iryu Y., Cabioch G., Chen D.Z*., Matsuda H., Piller W.E. (Eds.), 2009. Carbonates: Biological, Geochemical and Physical Processes. Sediment. Geol., 214, pp.100 (Special issue).
63.Chen Daizhao, Wang Jianguo, Qing Hairuo, Yan Detian, Li Renwei, 2009. Hydrothermal venting activities in the Early Cambrian, South China: Petrological, geochronological and stable isotopic constraints. Chem. Geol., 258: 168-181.
64.Yan Detian, Chen Daizhao*, Wang Qingcheng, Wang Jianguo, Wang Zhuozhuo, 2009. Carbon and sulfur isotopic anomalies across the Ordovician-Silurian boundary on Yangtze Platform, South China. Palaeogeogr. Palaeoclimat. Palaeoecol., 274: 32-39.
65.Yan Detian, Chen Daizhao, Wang Qingcheng, Wang Jianguo, 2009. Geochemical changes across the Ordovician-Silurian transition on the Yangtze Platform, South China. Science in China (Ser. D), 52: 38-54.
66.Yan Detian, Chen Daizhao, Wang Qingcheng, Wang Jianguo, Chu Yang, 2008. Environmental redox changes of the Yangtze Sea during the Ordo-Silurian transition. Acta Geologica Sinica-English Edition, 82 (3): 679-689.
67.Jiang Zaixing, Chen Daizhao, Qiu Longwei, Liang Hongbin and Ma Jun, 2007. Source-controlled carbonates in a small Eocene half-graben lake basin (Shulu Sag) in central Hebei Province, North China. Sedimentology, 54, 265-292.
68.Zhai Mingguo, Guo Jinghui, Li Zhong, Chen Daizhao, Peng Peng, Li Tiesheng, Hou Quanlin, Fan Qicheng, 2007. Linking the Sulu UHP belt to the Korean Peninsula: Evidence from eclogite, Precambrian basement, and Paleozoic sedimentary basins. Gondwana Research, 12, 388-403.
69.Chen Daizhao, Qing Hairuo, Yan Xin, Li He, 2006. Hydrothermal venting and basin evolution (Devonian, South China): Constraints from rare earth element geochemistry of chert. Sediment. Geol., 183, 203-216.
70.Chen Daizhao, Qing Hairuo, Li Renwei, 2005. The Late Devonian Frasnian-Famennian (F/F) biotic crisis: Insights from δ13Ccarb, δ13Corg, 87Sr/86Sr isotopic systematics. Earth Planet. Sci. Letters, 235, 151-166.
71.Bian Qiantao, Zhu Shixing, Pospelov, I.I., Semikhatove, M.A., Sun Shufen, Chen Daizhao and Na Chunguan, 2005. Discovery of the Jiawengmen stromatolite assemblage in the southern belt of Eastern Kunlun, NW China and its significance. Acta Geologica Sinica (English Edition), 79 (4): 471-480.
72.Zhu Jingquan, Li Yongtie, Jiang Maosheng and Chen Daizhao, 2004. Carbon isotopic composition and its implication of the Lower Cretaceous Aptian-Albian shallow water carbonates in the Cuoqin Basin, northern Tibet. Science in China (Series D), 47: 247-254.
73.Chen Daizhao and Tucker, M.E., 2004. Palaeokarst and its implication for the extinction event at the Frasnian-Famennian boundary (Guilin, South China). Jour.Geol. Soci. London, 161, 895–898.
74.Chen Daizhao, Qing Hairuo and Yang Chao, 2004. Multistage hydrothermal dolomites in the Middle Devonian (Givetian) carbonates from the Guilin area, South China. Sedimentology, 51, 1029–1051.
75.Zhu Jingquan, Li Yongtie, Jiang Maosheng and Chen Daizhao, 2004. Carbon isotopic composition and its implication of the Lower Cretaceous Aptian-Albian shallow water carbonates in the Cuoqin Basin, northern Tibet. Science in China (Series D), 47, 247-254.
76.Chen Daizhao, Tucker, M.E., 2003. Frasnian-Famennian mass extinction: Insights from high-resolution sequence stratigraphy and cyclostratigraphy in South China. Palaeogeogr. Palaeoclimat. Palaeoecol., 193, 87-111.
77.Chen Daizhao, Tucker, M.E., Shen Yan’an, Yans, J. and Preat, A., 2002. Carbon isotopic excursions and sea-level change: Implications for the Frasnian-Famennian biotic crisis. Jour. Geol. Soci. London, 159, 63-66.
78.Chen Daizhao, Tucker, M.E., Jingquan Zhu and Maosheng Jiang, 2002. Carbonate platform evolution: from a bioconstructed platform margin to a sand shoal system (Devonian, Guilin, South China). Sedimentology, 49, 737-764.
79.Chen Daizhao, Tucker, M.E., Zhu Jingquan and Jiang Maosheng, 2001. Sedimentation in a starved basin, Middle to Late Devonian, southern Guilin, South China. Basin Res., 13, 141-168.
80.Chen Daizhao, Tucker, M.E., Jiang Maosheng and Zhu Jingquan, 2001. Long-distance correlation between tectonic-controlled, isolated carbonate platforms by cyclostratigraphy and sequence stratigraphy in the Devonian of South China. Sedimentology, 48, 57-78.
81.Jiang Maosheng, Zhu Jingquan, Chen Daizhao, Zhang Renhu and Qiao Guangsheng, 2001. Carbon and strontium isotope variations and responses to sea-level fluctuations in the Ordovician of the Tarim Basin. Science in China (Series D), 144, 816-823.
82.Chen Daizhao, Zhang Pengfei, 1996. Cyclothems of the Longtan Formation, Upper Permian, western Guizhou, Scientia Geologica Sinica (Overseas Edition), 5 (1): 91-104.
發(fā)表(中文期刊)論文:
[1]何治亮,馬永生,張軍濤,朱東亞,錢一雄,丁茜,陳代釗.中國的白云巖與白云巖儲層:分布、成因與控制因素[J].石油與天然氣地質,2020,41(01):1-14.
[2]陳代釗,張艷秋,周錫強,董少鋒.塔里木盆地西緣上寒武統下丘里塔格群熱液白云巖改造時限:來自古地磁的約束[J].石油與天然氣地質,2020,41(01):50-58.
[3]宋亞芳,陳代釗,郭川,周錫強.塔里木盆地肖爾布拉克剖面肖爾布拉克組下段微生物碳酸鹽巖沉積特征[J].沉積學報,2020,38(01):55-63.
[4]周錫強,陳代釗,劉牧,胡建芳.中國沉積學發(fā)展戰(zhàn)略:沉積地球化學研究現狀與展望[J].沉積學報,2017,35(06):1293-1316.
[5]陳代釗,錢一雄.深層—超深層白云巖儲集層:機遇與挑戰(zhàn)[J].古地理學報,2017,19(02):187-196.
[6]周錫強,遇昊,黃泰譽,張力鈺,張恭境,付勇,陳代釗.重晶石沉積類型及成因評述——兼論揚子地區(qū)下寒武統重晶石的富集機制[J].沉積學報,2016,34(06):1044-1056.
[7]王卓卓,施立志,張永生,陳代釗,梁江平.湘桂地區(qū)泥盆紀硅巖Rb-Sr、Sm-Nd同位素地球化學特征及構造沉積背景研究[J].沉積學報,2015,33(04):679-686.
[8]錢一雄,杜永明,陳代釗,尤東華,張軍濤,陳躍,劉忠寶.塔里木盆地肖爾布拉克剖面奇格布拉克組層序界面與沉積相研究[J].石油實驗地質,2014,36(01):1-8.
[9]陳代釗,汪建國,嚴德天,韋恒葉.中揚子地區(qū)早寒武世構造—沉積樣式與古地理格局[J].地質科學,2012,47(04):1052-1070.
[10]錢一雄,尤東華,陳代釗,卿海若,何治亮,馬玉春,田蜜,席斌斌.塔東北庫魯克塔格中上寒武統白云巖巖石學、地球化學特征與成因探討——與加拿大西部盆地惠而浦(Whirlpool point)剖面對比[J].巖石學報,2012,28(08):2525-2541.
[11]錢一雄,陳代釗,尤東華,卿海若,何治亮,董少峰,馬玉春,焦存禮,田蜜.塔東北庫魯克塔格地區(qū)中上寒武統白云巖類型與孔隙演化[J].古地理學報,2012,14(04):461-476.
[12]遇昊,陳代釗,韋恒葉,汪建國.鄂西地區(qū)上二疊樂平統大隆組硅質巖成因及有機質富集機理[J].巖石學報,2012,28(03):1017-1027. 通訊作者
[13]韋恒葉,陳代釗.鄂西—湘西北地區(qū)二疊紀棲霞期巖相古地理[J].古地理學報,2011,13(05):551-562.
[14]焦存禮,邢秀娟,何碧竹,陳代釗,李程成,劉忠寶.塔里木盆地下古生界白云巖儲層特征與成因類型[J].中國地質,2011,38(04):1008-1015.
[15]王旭,沈建偉,陳代釗,楊紅強,王月.塔里木盆地柯坪-巴楚地區(qū)早古生代白云巖類型及微量元素地球化學特征[J].礦物巖石,2011,31(02):23-32.
[16]錢一雄,尤東華,陳代釗,陳躍,姜海健,劉忠寶.塔里木盆地肖爾布拉克上震旦統蘇蓋特布拉克組層序界面與沉積相[J].地質科學,2011,46(02):445-455.
[17]陳代釗,汪建國,嚴德天,韋恒葉,遇昊,王清晨.揚子地區(qū)古生代主要烴源巖有機質富集的環(huán)境動力學機制與差異[J].地質科學,2011,46(01):5-26.
[18]汪建國,陳代釗,嚴德天,韋恒葉,遇昊.湘西地區(qū)前寒武紀—寒武紀轉折期碳酸鹽—硅泥質沉積體系的截然轉換:地層—沉積樣式,形成機理及意義[J].地質科學,2011,46(01):27-41.
[19]嚴德天,王清晨,陳代釗,汪建國,邱振.揚子地區(qū)晚奧陶世碳酸鹽臺地淹沒事件及其地質意義[J].地質科學,2011,46(01):42-51.
[20]韋恒葉,陳代釗,遇昊,汪建國.鄂西地區(qū)中二疊統棲霞組下部烴源巖形成機理[J].地質科學,2011,46(01):68-82.
[21]遇昊,陳代釗,韋恒葉,汪建國,常華進.二疊紀末期海洋缺氧:來自黃鐵礦形態(tài)的證據[J].地質科學,2011,46(01):83-91.
[22]卿海若,陳代釗.非熱液成因的鞍形白云石:來自加拿大薩斯喀徹溫省東南部奧陶系Yeoman組的巖石學和地球化學證據[J].沉積學報,2010,28(05):980-986.
[23]王丹,王旭,陳代釗,楊長春,Hairuo Qing,吳茂炳,邢秀娟.塔里木盆地塔北、塔中地區(qū)寒武系—奧陶系碳酸鹽巖中鞍形白云石膠結物特征[J].地質科學,2010,45(02):580-594.
[24]王丹,陳代釗,楊長春,王旭,吳茂炳,邢秀娟.埋藏環(huán)境白云石結構類型[J].沉積學報,2010,28(01):17-25.
[25]汪建國,陳代釗,嚴德天.重大地質轉折期的碳、硫循環(huán)與環(huán)境演變[J].地學前緣,2009,16(06):33-47.
[26]許志剛,陳代釗,曾榮樹,郭凱,李元平,肖斌,王旭.我國吉林油田大情字井區(qū)塊CO_2地下埋存試驗區(qū)地質埋存格架[J].地質學報,2009,83(06):875-878+896+879-884.
[27]嚴德天,陳代釗,王清晨,汪建國.揚子地區(qū)奧陶系-志留系界線附近地球化學研究[J].中國科學(D輯:地球科學),2009,39(03):285-299.
[28]許志剛,陳代釗,曾榮樹,郭凱,王旭.CO2地下地質埋存原理和條件[J].西南石油大學學報(自然科學版),2009,31(01):91-97+192-193.
[29]許志剛,陳代釗,曾榮樹,郭凱,李元平.CO2地下埋存分布狀況及環(huán)境影響的監(jiān)測[J].氣候變化研究進展,2008(06):363-368.
[30]陳代釗.構造-熱液白云巖化作用與白云巖儲層[J].石油與天然氣地質,2008,29(05):614-622.
[31]許志剛,陳代釗,曾榮樹.CO_2地質埋存滲漏風險及補救對策[J].地質論評,2008(03):373-386.
[32]嚴德天,王清晨,陳代釗,汪建國,王卓卓.揚子及周緣地區(qū)上奧陶統—下志留統烴源巖發(fā)育環(huán)境及其控制因素[J].地質學報,2008,82(03):321-327.
[33]翟明國,郭敬輝,李忠,陳代釗,彭澎,李鐵勝,張艷斌,侯泉林,樊祺誠,胡波.蘇魯造山帶在朝鮮半島的延伸:造山帶、前寒武紀基底以及古生代沉積盆地的證據與制約[J].高校地質學報,2007(03):415-428.
[34]許志剛,陳代釗,李勝利,范洪軍,韓璐.南堡地區(qū)東營組一段儲層敏感性評價及油層保護[J].沉積與特提斯地質,2007,23(03):101-104.
[35]汪建國,陳代釗,王清晨,嚴德天,王卓卓.中揚子地區(qū)晚震旦世—早寒武世轉折期臺—盆演化及烴源巖形成機理[J].地質學報,2007,81(08):1102-1109+1162.
[36]王卓卓,陳代釗,汪建國.廣西南寧地區(qū)泥盆紀硅質巖稀土元素地球化學特征及沉積背景[J].地質科學,2007,42(03):558-569.
[37]許志剛,陳代釗,曾榮樹.CO2的地質埋存與資源化利用進展[J].地球科學進展,2007,22(07):698-707.
[38]王卓卓,陳代釗,汪建國.廣西南寧地區(qū)泥盆系硅質巖地球化學特征及沉積環(huán)境[J].沉積學報,2007,25(02):239-245.
[39]王卓卓,陳代釗.南寧地區(qū)泥盆系硅質巖地球化學及沉積構造背景[J].云南地質,2006(04):440-441.
[40]邊千韜,朱士興,I.I.Pospelov,M.A.Semikhatov,孫淑芬,陳代釗,那春光.東昆侖南帶中元古代晚期—新元古代早期疊層石組合的發(fā)現[J].地質科學,2006,41(03):500-510+551-553.
[41]陳代釗,王卓卓,汪建國.晚泥盆世地球各圈層相互作用與海洋生態(tài)危機:來自高分辨率的沉積和同位素地球化學證據[J].自然科學進展,2006,16(04):439-448.
[42]邊千韜,朱士興,I IPOSPELOV,M A SEM IKHATOV,孫淑芬,陳代釗,那春光.東昆侖南帶加嗡門疊層石組合的發(fā)現及其意義[J].地質學報,2005(04):530.
[43]曾榮樹,孫樞,陳代釗,段振豪.減少二氧化碳向大氣層的排放——二氧化碳地下儲存研究[J].中國科學基金,2004(04):6-10.
[44]朱井泉,李永鐵,江茂生,陳代釗.藏北措勤盆地早白堊世Aptian-Albian淺水碳酸鹽巖碳同位素組成及其意義[J].中國科學(D輯:地球科學),2003,33(03):216-222.
[45]江茂生,朱井泉,陳代釗,張任祜,喬廣生.塔里木盆地奧陶紀碳酸鹽巖碳、鍶同位素特征及其對海平面變化的響應[J].中國科學(D輯:地球科學),2002,32(01):36-42.
[46]江茂生 ,朱井泉 ,陳代釗 ,張任祜 ,喬廣生.Carbon and strontium isotope variations and responses to sea-level fluctuations in the Ordovician of the Tarim Basin[J].Science in China(Series D:Earth Sciences),2001(09):816-823.
[47]陳代釗.旋回地層──一個正在發(fā)展中的理論[J].第四紀研究,2000(02):186-195.
[48]陳代釗,1998. 海平面變化與沉積、成礦作用,刊于:地球系統科學 (陳述彭等主編).
[49]陳代釗.河流沉積占優(yōu)勢地層中高頻層序地層──以貴州盤縣西部龍?zhí)督M為例[J].地質科學,1997(04):432-444.
[50]陳代釗.碳酸鹽旋回地層研究現狀[J].巖相古地理,1997(01):67-73.
[51]陳代釗.碳酸鹽旋回地層研究現狀[J].巖相古地理,1997,17(01):64-70.
[52]陳代釗,張鵬飛.三角洲平原上網結河的發(fā)育與聚煤作用[J].沉積學報,1996,14(03):105-114.
[53]陳代釗,陳其英,江茂生.泥盆紀海相碳酸鹽巖碳同位素組成及演變[J].巖相古地理,1995(05):22-28.
[54]陳代釗,張鵬飛,1995. 近海平原型含煤地層旋回層及其沉積演替,沉積學及巖相古地理學新進展(王英華主編),石油工業(yè)出版社, 133-139.
[55]陳代釗,陳其英.黔南地區(qū)早、中泥盆世沉積演化的動力機制[J].沉積學報,1995,13(03):54-65.
[56]邵龍義,張鵬飛,陳代釗,羅忠.滇東黔西晚二疊世早期辮狀河三角洲沉積體系及其聚煤特征[J].沉積學報,1994,12(04):132-139.
[57]陳代釗,陳其英.黔南早、中泥盆世層序地層格架與海平面變化[J].中國科學(B輯 化學 生命科學 地學),1994,24(11):1197-1205.
[58]陳代釗,陳其英.華南泥盆紀沉積演化及海水進退規(guī)程[J].地質科學,1994,29(03):246-255.
[59]陳代釗.就“層序地層學與巖相古地理編圖——以中國南方泥盆紀地層為例”一文的討論[J].巖相古地理,1993(02):62-63.
[60]柳祖漢,李有禹,雷躍冬,陳代釗.澧縣羊耳山地區(qū)有無下石炭統[J].湘潭礦業(yè)學院學報,1986(01):44-48.
[61]H.G.Richards,陳代釗.洋底熱泉[J].海洋地質譯叢,1986(01):64-68.
[62]George de Vries Klein,陳代釗.在海盆中根據階段性濁流沉積確定構造上升的速度[J].海洋地質譯叢,1985(03):37-40.
發(fā)表會議論文:
[1]黃泰譽,陳代釗,付勇,汪建國,郭增輝. 貴州銅仁地區(qū)早寒武世早期古海洋氧化還原條件和有機質富集機理研究[C]. 2015年全國沉積學大會沉積學與非常規(guī)資源論文摘要集. 2015:234-235.
[2]郭川,陳代釗,董少峰,魏文文,丁一. 塔里木盆地鷹山組生物潛穴白云巖成因機理[C]. 2015年全國沉積學大會沉積學與非常規(guī)資源論文摘要集. 2015:336-337.
[3]遇昊,陳代釗,韋恒葉,汪建國. 鄂西地區(qū)上二疊樂平統大隆組硅質巖成因及有機質富集機理[C]. 中國科學院地質與地球物理研究所2012年度(第12屆)學術論文匯編——油氣資源研究室. 2013:305-315.
[4]遇昊,陳代釗,韋恒葉,汪建國,常華進. 二疊紀末期海洋缺氧:來自黃鐵礦形態(tài)的證據[C]. 中國科學院地質與地球物理研究所第11屆(2011年度)學術年會論文集(下). 2012:467-475.
[5]陳代釗,汪建國,嚴德天,韋恒葉,遇昊,王清晨. 揚子地區(qū)古生代主要烴源巖有機質富集的環(huán)境動力學機制與差異[C]. 中國科學院地質與地球物理研究所第11屆(2011年度)學術年會論文集(下). 2012:366-387.
[6]汪建國,陳代釗,嚴德天,韋恒葉,遇昊. 湘西地區(qū)前寒武紀—寒武紀轉折期碳酸鹽—硅泥質沉積體系的截然轉換:地層—沉積樣式,形成機理及意義[C]. 中國科學院地質與地球物理研究所第11屆(2011年度)學術年會論文集(下). 2012:440-454.
[7]韋恒葉,陳代釗. 鄂西-湘西北地區(qū)二疊紀棲霞期巖相古地理[C]. 中國科學院地質與地球物理研究所第11屆(2011年度)學術年會論文集(下). 2012:455-466.
[8]汪建國,陳代釗,嚴德天,韋恒葉. 埃迪卡拉紀-寒武紀轉折期深海的演化[C]. 中國礦物巖石地球化學學會第13屆學術年會論文集. 2011:503.
[9]遇昊,陳代釗,韋恒葉,汪建國,常華進. 二疊紀末期海洋缺氧——來自黃鐵礦形態(tài)的證據[C]. 中國礦物巖石地球化學學會第13屆學術年會論文集. 2011:389.
[10]許志剛,陳代釗,曾榮樹,郭凱,李元平. CO_2地下埋存分布狀況及環(huán)境影響的監(jiān)測[C]. 中國科學院地質與地球物理研究所2008學術論文匯編. 2009:1749-1754.
[11]許志剛,陳代釗,曾榮樹. CO_2地質埋存滲漏風險及補救對策[C]. 中國科學院地質與地球物理研究所2008學術論文匯編. 2009:1735-1748.
[12]王卓卓,陳代釗,汪建國. 廣西南寧地區(qū)泥盆紀硅質巖稀土元素地球化學特征及沉積背景[C]. 中國科學院地質與地球物理研究所2007學術論文匯編(第六卷). 2008:294-305.
[13]王卓卓,陳代釗,汪建國. 廣西南寧地區(qū)泥盆系硅質巖地球化學特征及沉積環(huán)境[C]. 中國科學院地質與地球物理研究所2007學術論文匯編(第六卷). 2008:306-312.
[14]汪建國,陳代釗,王清晨,嚴德天,王卓卓. 中揚子地區(qū)晚震旦世—早寒武世轉折期臺—盆演化及烴源巖形成機理[C]. 中國科學院地質與地球物理研究所2007學術論文匯編(第六卷). 2008:286-293.
[15]許志剛,陳代釗,曾榮樹. CO_2的地質埋存與資源化利用進展[C]. 中國科學院地質與地球物理研究所2007學術論文匯編(第六卷). 2008:350-359.
[16]嚴德天,王清晨,陳代釗,汪建國. 揚子地區(qū)上奧陶—下志留統黑色頁巖地質特征及其油氣資源意義[C]. 中國礦物巖石地球化學學會第11屆學術年會論文集. 2007:417-419.
[17]邊千韜,朱士興,I.I.Pospelov,M.A.Sem ikhatov,孫淑芬,陳代釗,那春光. 東昆侖南帶中元古代晚期—新元古代早期疊層石組合的發(fā)現[C]. 中國科學院地質與地球物理研究所2006年論文摘要集. 2007:62.
[18]陳代釗,王卓卓,汪建國. 晚泥盆世地球各圈層相互作用與海洋生態(tài)危機:來自高分辨率的沉積和同位素地球化學證據[C]. 中國科學院地質與地球物理研究所2006年論文摘要集. 2007:79.
[19]陳代釗,卿海若,李任偉. 弗拉-法門轉折期的生物集群絕滅:來自δ~(13)C_(carb)-δ~(13)C_(org)-~(87)Sr/~(86)Sr 系統同位素和沉積學證據的新認識[C]. 第三屆全國沉積學大會論文摘要匯編. 2004:32.
[20]陳代釗,卿海若,楊朝. 廣西桂林地區(qū)中泥盆統碳酸鹽巖多期熱液白云巖化作用[C]. 第三屆全國沉積學大會論文摘要匯編. 2004:61.
[21]陳代釗. 埋藏-熱液(巖溶)成巖作用與碳酸鹽巖儲層表征——典型實例介紹及對塔中碳酸鹽巖儲層演化的思考[C]. 塔里木及周邊地區(qū)盆地(山)動力學與油氣聚集學術研討會論文摘要集. 2004:111-116.
[22]朱井泉,李永鐵,江茂生,陳代釗. 藏北措勤盆地早白堊世Aptian-Albian淺水碳酸鹽巖碳同位素組成及其意義[C]. 中國科學院地質與地球物理研究所二○○三學術論文匯編·第四卷(油氣資源). 2003:350-356.
[23]江茂生,朱井泉,陳代釗,張任祜,喬廣生. 塔里木盆地奧陶紀碳酸鹽巖碳、鍶同位素特征及其對海平面變化的響應[C]. 中國科學院地質與地球物理研究所2002學術論文摘要匯編. 2002:132.
[24]江茂生,朱井泉,陳代釗,張任祜,喬廣生. Carbon and strontium isotope variations and responses to sea-level fluctuations in the Ordovician of the Tarim Basin[C]. 中國科學院地質與地球物理研究所2001學術論文匯編(第四卷). 2001:183-190.
[25]陳代釗. 華南泥盆紀一個拉分盆地中的碳酸鹽沉積作用[C]. 2001年全國沉積學大會摘要論文集. 2001:70.